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Abstract

We investigate the emergence of the quantum regime of

the FEL when many electrons interact simultaneously with

the wiggler and the laser field. We find the Quantum FEL

as the limit where only two momentum states are populated

by the electrons. Moreover, we obtain exponential gain-per-

pass and start-up from vacuum.

INTRODUCTION

The recent years have seen rising interest in a possible

novel regime of FEL operation: the so-called Quantum FEL.

Bonifacio et al. [1] have proposed the implementation of
this realm – despite experimental difficulties – because they

expect better temporal coherence properties and a narrower

linewidth of the radiation in SASE operation. Due to these

prospects the Helmholtz-Zentrum Dresden-Rossendorf and

Ulm University have started a collaboration to gain deeper

insight into the emergence and the properties of the Quan-

tum FEL. In a single-electron model we have identified the

quantum regime of the FEL as an effective two-level system

for the electron’s momentum states [2] and have established

a connection to the Jaynes-Cummings model [3].

In this article, we examine a situation where many elec-

trons interact simultaneously with the laser and the wiggler

field. Based on collective projection operators we develop

a formalism which allows us to identify the two-level be-

haviour of the Quantum FEL. However, since we are dealing

with many electrons, the suitable analogy is the Dicke [4] –

describing a collection of two-level atoms interacting with a

radiation field – rather than the Jaynes-Cummings model.

In the two-level approximation we find start-up from vac-

uum and exponential gain-per-pass in the short-time limit

which are essential for SASE operation. Moreover, we cal-

culate higher order corrections to this deep quantum regime

and thus find analytical expressions which match the numer-

ical results of [1].

MODEL
We start from the one-dimensional, quantized single-

mode and many-particle Bambini-Renieri Hamiltonian [5,6]

Ĥ ≡
N∑
j=1

p̂2j
2m
+ �g

���âL
N∑
j=1

ei2k ẑ j + h.c.
��� (1)

where � and m stand for the reduced Planck constant and for
the electron mass, respectively and we already have elim-

inated the free dynamics of the laser field. The Bambini-

Renieri frame – in which a nonrelativistic treatment of the

FEL dynamics is possible – is defined by the condition that

the wave numbers of the laser (subscript L) and the wiggler

field (subscript W) are equal, i.e. kL = kW ≡ k [5]. The
position operator ẑ j for the j-th of the N electrons and its
conjugate momentum operator p̂j fulfill the canonical com-

mutation relation
[
ẑ j , p̂j

]
= i�. While the laser field is quan-

tized with the bosonic commutation relation
[
âL, â

†
L

]
= 1

for the photon annihilation and creation operators âL and â†
L
,

the wiggler is treated as an external classical field due to its

high intensity. The coupling constant g ≡ e2ALÃW/(�m)
is given by the product of the amplitudesAL and ÃW of the
vector potentials of the laser and the wiggler field, respec-

tively with e being the elementary charge.
An essential ingredient for recognizing the two-level be-

haviour of the Quantum FEL in the single-particle case is

the occurrence of different time scales in the Schrödinger

equation [2]. This feature stands out by expanding the state

vector of the system in the scattering basis |n + μ,p − μq〉 as
introduced in [7] which is characterized by the number μ of
scattered photons, that is, the number of times the electron

experiences the quantum mechanical recoil q ≡ 2�k with n
being the initial number of photons in the laser field and p
the initial momentum of the electron.

This expansion is not possible in the many-particle case,

since complicated entangled states are created by the Hamil-

tonian Eq. (1) as apparent from the case N = 2(
e2ik ẑ1 + e2ik ẑ2

)
|p1,p2〉 ∼ |p1 + q,p2〉+ |p1,p2 + q〉 . (2)

Therefore, we try to see the occurrence of the relevant time

scales directly in the Hamiltonian and not from a particular
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representation of the state-vector. We achieve this goal by

introducing the collective projection operators

Υ̂p′,p′′ ≡
N∑
j=1

σ̂
( j )
p′,p′′ ≡

N∑
j=1

|p′〉( j ) 〈p′′ | (3)

where |p〉( j ) is the momentum eigenstate of the j-th electron.
With the help of the completeness relation

∑
p′
|p′〉( j ) 〈p′ | = 1 (4)

we rewrite the Hamiltonian Eq. (1) in terms of these collec-

tive operators as

N∑
j=1

p̂2j =
∑
p′

p′2Υ̂p′,p′ and
N∑
j=1

e±i2k ẑ j =
∑
p′
Υ̂p′±q,p′

(5)

where we have made use of ( j ) 〈p′ | p̂2j |p′′〉( j ) = p′2δp′,p′′
and ( j ) 〈p′ | e±i2k ẑ j |p′′〉( j ) = δp′,p′′±q . Note that we do not
sum over the particles any longer, but over the momenta,

which in our formalism are numbers instead of operators.

In order to further simplify our approach we note that

due to the discreteness of the recoil μq each electron can
only be in momentum states separated by the recoil q. As-
suming that initially all electrons have the same momentum

p, i.e. |Ψ(t = 0)〉 = |p,p, ...,p〉 ⊗ |n〉 (with the laser field
being initially in the Fock state with photon number n) we
can change the summation index in Eq. (5) to the integer

number μ according to p′ → p − μq (with p fixed) so that
Υ̂p′±q,p′ → Υ̂μ∓1, μ .
The last step in recognizing the different time scales is to

transform the Hamiltonian into the interaction picture which

yields the expression

ĤInt = ε
���âLeiΔτ

∑
μ

Υ̂μ,μ+1 e
−i2μτ + h.c.��� . (6)

Here, we have introduced the scaled time τ ≡ ωrt, the
coupling constant ε ≡ g/ωr, the recoil frequency ωr ≡
q2/(2m�) and the momentum deviation from resonance
Δ ≡ p/(q/2) − 1. Moreover, we have made the transfor-
mation to the interaction picture with the help of the com-

mutation relation[
Υ̂μ,ν , Υ̂ρ,λ

]
= δν,ρΥ̂μ,λ − δλ,μΥ̂ρ,ν (7)

which can be easily verified using the definition Eq. (3).

We emphasize that we have defined the resonant electron

momentum at p = q/2, which is the reasonable definition
for the Quantum FEL [2] as we will see in the next section.

DEEP QUANTUM REGIME
The Hamiltonian Eq. (6) consists of terms oscillating with

integer multiples of the recoil frequency ωr and a contribu-
tion due to the deviation Δ from resonance. When we choose

the initial momentum p of the electrons in the vicinity of
the quantum resonance q/2, i.e. Δ 
 1, the terms e±iΔτ will
be slowly varying. In contrast, the phase factors with eiμτ

are rapidly oscillating for μ � 0 and we can neglect them
in the weak-coupling limit performing a rotating-wave-like

approximation. This quantum regime is determined by the

quantum parameter [2]

α ≡ ε √N =
g
√

N
ωr

(8)

given by the ratio of the coupling and the recoil frequency

and has to be small to fulfill the weak-coupling condition,

i.e. α 
 1.
If we perform this rotating-wave-like approximation, we

arrive at the Quantum FEL Hamiltonian

ĤQFEL ≡ ε
{
âL e+iΔτΥ̂0,1 + â†

L
e−iΔτΥ̂1,0

}
(9)

which governs the dynamics of the FEL in the deep quantum

regime. Here, the electrons can only have the momenta p
and p − q and we observe the same two-level behaviour as
in the single-particle case [2]. This limit is analogous to

the Jaynes-Cummings model [3] in quantum optics, which

describes the dynamics of a single two-level atom interacting
with a quantized radiation field.

However, the algebra of the collective operators Υ̂ρ,λ with

ρ, λ = 0,1 is more complicated and therefore richer than that
of the Pauli matrices which appear in the Jaynes-Cummings

Hamiltonian. This distinctive difference originates from the

fact that the collective operators create entangled superposi-

tion states as exemplified by Eq. (2) and products of these

operators cannot be cast in a closed form. Indeed, the Hamil-

tonian Eq. (9) is equivalent to the Dicke Hamiltonian [4]

which describes the simultaneous interaction of a collection
of two-level atoms with a quantized electromagnetic field.

Thus, the projection operators Υ̂ρ,λ are equivalent to the

pseudo angular momentum operators of the Dicke model.

The time evolution of the system follows from the Heisen-

berg equation of motion

d

dτ
Ô = i

[
ĤQFEL, Ô

]
(10)

for an operator Ô and we obtain a system of coupled non-
linear differential equations, for which no analytical solution

is known. However, for short times we can linearize this set

of equations in the parametrical approximation [8].

For this purpose, we notice the appearance of the operator

Υ̂z ≡ Υ̂0,0 − Υ̂1,1 in the equations for Υ̂1,0 and âL. This
operator describes a kind of inversion of the number of

electrons in the excited and ground state denoted by p and
p− q, respectively. For an initial state |p,p, ...,p〉 ⊗ |n〉, with
all electrons in the excited state, the expectation value of

Υ̂z gives the number of electrons N � 1. We assume that
for short times comparatively few electrons change to the

ground state and we can replace Υ̂z by its expectation value

at τ = 0, i.e. Υ̂z ≈ 〈Υ̂z〉0 = N . Thus, we arrive at the
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Figure 1: Mean number of photons 〈nL〉 for the Quantum
FEL as a function of the scaled time τ according to Eq. (13)
with α = 0.3 - for resonance Δ = 0 (blue line), Δ = 0.3 (red
dashed line) and Δ = 0.5 (green dashed/dotted line).

linearized set of equations

i
d

dτ

(
Υ̃1,0
ãL

)
= α

(
0 −1
1 κ

) (
Υ̃1,0
ãL

)
(11)

for the operators Υ̃1,0 ≡ Υ̂1,0/
√

N and ãL ≡ âL. Here, we
have already transformed to a frame where the time depen-

dence due to the detuning Δ ≡ κα has been eliminated.
Searching for a solution of the kind ∼ e−iλτ we easily find

the frequencies

λ± =
κα

2
± iα
√
1 − (κ/2)2 . (12)

The non-vanishing imaginary part – which has its maximum

at resonance – leads to an exponential gain-per-pass. Indeed,

the time evolution of the mean photon number

〈n̂L(τ)〉 = 1

1 − (κ/2)2
sinh2

[
ατ

√
1 − (κ/2)2

]
(13)

with the photon number operator n̂L ≡ â†
L

âL confirms this
claim, where we have started with the laser field in vacuum,

i.e. n = 0. Hence, with the start-up from vacuum and the
exponential gain-per-pass we have obtained two important

ingredients for the realisation of a SASE-FEL [9]. In Fig. 1

we show the photon number versus time τ for different detun-
ings from resonance q/2. We note that the photon number
grows more slowly, the further away the electrons are from

resonance.

At resonance, the photon number increases exponentially

with e2αωrt , thus we find the gain length

L(q)
g =

c
2αωr

(14)

for the Quantum FEL where we have used t ≈ z/c with c
being the speed of light .

We have to keep in mind that the length given by Eq. (14)

is measured in the co-moving reference frame and we have

to include the effects of relativistic length contraction to

compute the gain length in the laboratory frame. Note that

the scaling with α−1 is not very different from the classi-
cal regime where L(cl)

g ∼ α−2/3 [10]. However, since in
the quantum regime α 
 1 the gain length L(q)

g is very

large. Hence, the suggestion of an optical undulator in [11],

where more undulator periods can be passed within the same

absolute wiggler length, seems reasonable.

We note that the connection between the Quantum FEL

and the Dicke model – at least for exact resonance – was al-

ready found in [12] starting from a second-quantized Hamil-

tonian [13]. The link to our model can be established by

applying Schwinger’s representation [14] of angular momen-

tum Υ̂1,0 = ĉ†
1
ĉ0 , where ĉ†

1
and ĉ0 are bosonic operators.

In the next section we present the first proof for the two-

level behaviour of the Quantum FEL within a many-electron

model, at least in the linearized regime.

HIGHER ORDER CORRECTIONS
A very useful technique to treat Hamiltonians of the type

Eq. (6) is the Bogoliubov-Mitropolskii method of averaging

[15] which is well-known in non-linear mechanics and has

recently found its application in the field of atomic Bragg

diffraction [16]. Since we now apply this method to the

Hamiltonian and not to the equations of motion, we use a

variation of the original technique: the so-called "Canonical

Averaging" [17].

For this purpose we first cast our Hamiltonian in the form

Ĥ ′(τ) = ε
∑
μ

Ĥμ e
i2μτ (15)

with ⎧⎪⎨⎪⎩Ĥ0 ≡ âLΥ̂0,1 + â†
L
Υ̂1,0 − κ

√
N n̂L

Ĥμ ≡ âLΥ̂−μ,−μ+1 + â†
L
Υ̂μ+1, μ

(16)

where we have already eliminated the time-dependence due

to the detuning Δ = κα which again is assumed to be small,
i.e. Δ 
 1.
Following the procedure of [17] we search for a trans-

formation of the density operator ρ̂(τ) in the form of

eÂ(τ) ρ̂(τ)e−Â(τ) where Â(τ) itself can be expanded into
a power series of ε and every term of this series again is
expressed as a Fourier series similar to Eq. (15). Using the

Liouville equation

i
d

dτ
ρ̂(τ) =

[
Ĥ ′(τ), ρ̂(τ)

]
(17)

we choose Â(τ) in such a way that all secular growing terms
vanish order by order and we arrive at a time-independent

effective Hamiltonian

Ĥeff = ε Ĥ
(1)
eff
+ ε2Ĥ (2)

eff
+ ε3Ĥ (3)

eff
+ ... . (18)

The first order gives Ĥ (1)
eff
= Ĥ0 in accordance with the dis-

cussion of the preceding section. We do not want to show the

cumbersome expressions [17] for the higher orders. Instead

we sketch the procedure: After calculating the Heisenberg
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equations of motion for Υ̂1,0 and âL up to third order in ε we
again linearize these equations by setting Υ̂0,0 ≈ N . Here,
the largest terms behave as εk Nk/2 = αk for the k-th order.
Keeping only these contributions we arrive at the linear set

of equations

i
d

dτ

(
Υ̃1,0
ãL

)
= α M

(
Υ̃1,0
ãL

)
(19)

with the matrix

M ≡ �� 0 −
(
1 − α2

8

)
1 − α2

8
−
(
κ + α

2
− κα2

4

)�� . (20)

Using again the ansatz e−iλτ we find the expression

Imλ = ±α
√
1 − κ

2

4

⎡⎢⎢⎢⎢⎣1 − κ/2

1 − κ2

4

α

4

−5 − 3κ
2 + κ4/2(

1 − κ2

4

)2 α2

32

⎤⎥⎥⎥⎥⎥⎦
(21)

for the imaginary part of the frequency which is responsible

for the exponential gain. For α 
 1 terms of higher order
yield only small corrections to Eq. (12). Note, that for exact

resonance κ = 0 the second order term vanishes and we have
to go to the next higher order to see the corrections.

At last we compare our results for the Quantum FEL with

the ones of Bonifacio et al. in [1]. Starting from a description
in terms of collective bunching operators, they have derived

the cubic equation

(
λ2 − 1

)
(λ + 1 + Δ) − 2α2 = 0 (22)

for the frequencies λ, which for α � 1 give asymptotically
the correct results for the classical high-gain FEL [9].

We now study Eq. (22) in the quantum regime α 
 1 by
expanding λ in powers of α, that is

λ = λ (0) + αλ (1) + α2λ (2) + α3λ (3) + ... (23)

and solve the resulting equations order by order. Here, we

have set Δ = κα 
 1. Indeed, we obtain – apart from

an unimportant rapidly oscillating solution – two solutions

whose imaginary part match with Eq. (21).

Hence, we have found a perfect correspondence between

our solution for the Quantum FEL and the one of [1], at least

up to third order in α and a small momentum detuning Δ.
This agreement is shown in Fig. 2 where we compare our

analytical results with the numerical solution of Eq. (22)

for two different values of α. Moreover, we see that the
maximum of Imλ is shifted from p = q/2 to the left for
increasing α. This feature is in accordance with the fact that
for the classical high-gain FEL the resonance is at p = 0 [10].

1st order

3rd order

Ref. [1]

Im
λ

p

q/2

0.9 1 1.1
0.087

0.1
α = 0.1

1st order

3rd order

Ref. [1]

Im
λ

p

q/2

0.25 1 1.75
0.33

0.5
α = 0.5

Figure 2: Imaginary part Imλ of the scaled frequency λ,
which governs the dynamics of the Quantum FEL vs. the

initial momentum p of the electrons in units of q/2. Our
results, first order in the quantum parameter α, Eq. (12),
(black line), and third order in α, Eq. (21), (red line), are
compared with the numerical solution of the cubic equation

Eq. (22) of [1] (blue dashed line) for α = 0.1 (above) and
α = 0.5 (below).

CONCLUSION
We have proposed a many-electron theory of the Quantum

FEL based on collective projection operators. This analysis

brings out most clearly that the underlying dynamics is not

governed by the Jaynes-Cummings but the Dicke Hamil-

tonian. In particular, the linearized Heisenberg equations

of motion for the lowest collective electron operator and

the annihilation operator of the field predict an exponential

gain starting from the vacuum. This result is crucial for

the realization of the SASE-FEL. Moreover, the method of

canonical averaging has allowed us to calculate higher order

corrections which are in complete agreement with the results

of Ref. [1]. A more detailed study of the quantum properties

of the radiation of the Quantum FEL is in preparation.
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