Keyword: resonance
Paper Title Other Keywords Page
MOP088 High Repetition Rate Energy Modulator System Utilizing a Laser Enhancement Cavity laser, cavity, electron, radiation 260
 
  • Y. Honda
    KEK, Ibaraki, Japan
 
  A high intensity laser field can be realized at a high repetition rate using an enhancement optical cavity scheme. We propose to apply the 100GW-level laser field inside the cavity for producing a micro-bunch structure in an electron bunch. Combining this system with an ERL scheme of accelerator, it can be used for a seeded FEL at a high repetition rate of ~100MHz continuous beam. The longitudinal electric field at the center area of a higher-order transverse mode of laser can be used to modulate beam energy at a period of the laser wavelength. A 250 MeV class two-loop ERL accelerator has been proposed in KEK as a future upgrade plan of existing 35 MeV ERL test accelerator. It will be able to provide a low emittance, small energy spread, short bunch electron beam at a high repetition rate of continuous operation. We propose to apply this beam to produce a seeded VUV coherent radiation. We will discuss the feasibility of the scheme and status of the laser modulator development.  
 
MOC01 Circular Polarization Control by Reverse Undulator Tapering FEL, undulator, bunching, electron 297
 
  • E. Schneidmiller, M.V. Yurkov
    DESY, Hamburg, Germany
 
  In order to produce circularly polarized light at X-ray FEL facilities one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. We propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The method can be used at different X-ray FEL facilities, in particular at LCLS after installation of the helical afterburner in the near future.  
slides icon Slides MOC01 [1.545 MB]  
 
TUP003 Quantum FEL II: Many-electron Theory electron, FEL, laser, photon 348
 
  • P. Kling, R. Sauerbrey
    HZDR, Dresden, Germany
  • R. Endrich, E.A. Giese, W.P. Schleich
    Uni Ulm, Ulm, Germany
 
  We investigate the emergence of the quantum regime of the FEL when many electrons interact simultaneously with the wiggler and the laser field. We find the Quantum FEL as the limit where only two momentum states are populated by the electrons. Moreover, we obtain exponential gain-per-pass and start-up from vacuum.  
 
TUP004 Quantum FEL I: Multi-mode Theory electron, photon, coupling, FEL 353
 
  • R. Endrich, E.A. Giese, W.P. Schleich
    Uni Ulm, Ulm, Germany
  • P. Kling, R. Sauerbrey
    HZDR, Dresden, Germany
 
  The quantum regime of the FEL in a single-mode, single-particle approximation is characterized by a two-level behaviour of the center-of-mass motion of the electrons. We extend this model to include all modes of the radiation field and analyze the effect of spontaneous emission. In particular, we investigate this scattering mechanism to derive experimental conditions for realizing an FEL in the quantum regime.  
 
TUP016 Quasi-optical Theory of Terahertz Superradiance from an Extended Electron Bunch electron, radiation, simulation, wakefield 391
 
  • N.S. Ginzburg, A. Malkin, A. Sergeev, V.Yu. Zaslavsky, I.V. Zotova
    IAP/RAS, Nizhny Novgorod, Russia
 
  Funding: This study was supported by the Russian Foundation for Basic Research (project no. 14-08-01180) and the Dynasty Foundation.
We consider superradiance of an extended relativistic electron bunch moving over a periodically corrugated surface for the generation of multi-megawatt terahertz pulses*. To study the above process we have developed a three-dimensional, self-consistent, quasi-optical theory of Cherenkov stimulated emission which includes a description of the formation of evanescent waves near the corrugated surface and its excitation by RF current induced in the electron bunch. Results obtained in the framework of a quasi-optical model were confirmed by direct CST STUDIO PIC simulations. There is a possibility of advancement towards still shorter wavelengths (infrared and optical), which can be achieved by decreasing the period of the diffraction gratings and increasing the density and energy of the particles in the electron bunches. Increase of coupling impedance can be obtained by using inclined incidence of electron bunch on corrugated surface (clinotron configuration).
Ginzburg N.S et al. Phys. Rev. Lett. 2013. V.110, Iss.18. 184801.
 
 
TUP040 Flying RF Undulator undulator, electron, radiation, focusing 474
 
  • A.V. Savilov, I.V. Bandurkin, S.V. Kuzikov, A.A. Vikharev
    IAP/RAS, Nizhny Novgorod, Russia
 
  A new concept for the room-temperature rf undulator, designed to produce coherent X-ray radiation by means of a relatively low-energy electron beam and pulsed mm-wavelength radiation, is proposed. The “flying” undulator is a high-power short rf pulse co-propagating together with a relativistic electron bunch in a helically corrugated waveguide. The electrons wiggle in the rf field of the -1st spatial harmonic with the phase velocity directed in the opposite direction in respect to the bunch velocity, so that particles can irradiate high-frequency Compton’s photons. A high group velocity (close to the speed of light) ensures long cooperative motion of the particles and the co-propagating rf pulse. This work is supported by the Russian Foundation for Basic Research (Projects 14-08-00803 and 14-02-00691).  
poster icon Poster TUP040 [0.189 MB]  
 
THP041 Development of All-metal Stacked-double Gate Field Emitter Array Cathodes for X-ray Free-electron Laser Applications electron, emittance, laser, collimation 811
 
  • S. Tsujino, H.-H. Braun, P. Das Kanungo, V. Guzenko, C. Lee, Y. Oh, M. Paraliev
    PSI, Villigen PSI, Switzerland
  • T. Feurer
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
 
  Funding: This work was partially supported by the Swiss National Science Foundation Nos. 200020143428 and 2000021147101.
We report the design, fabrication, and characterization of all-metal stacked-double-gate field emitter array (FEA) cathodes as a potential upgrade option of SwissFEL cathode at the Paul Scherrer Institute. Single-gate FEAs have demonstrated stable operation and gated field emission in pulsed diode gun with gradient up to 30 MV/m with pulse duration down to 200 ps and generation of 5 pC electron bunches by near infrared laser-induced field emission. However for high brightness applications it is crucial to reduce the beam divergence of individual beamlet by a suitable double-gate structure. The challenge lies in suppressing the concomitant decrease of the emission current when a negative focusing potential is applied to the second gate. To solve this problem, a stacked-double-gate FEAs with large collimation gate aperture diameter has been proposed. The intrinsic transverse emittance evaluated from a beam measurement for 1 mm-diameter FEA was below 0.1 mm-mrad. Compatibility with neon-gas conditioning to improve the beam uniformity and high emission current with double-gate FEAs were also demonstrated recently. The current research is focusing on the combination of the surface-plasmon-polariton resonance of the gate electrode and the near infrared laser-induced field emission to realize an ultrafast and ultrabright FEA cathode.
 
 
THP056 The SwissFEL C-band RF Pulse Compressor: Manufacturing and Proof of Precision by RF Measurements vacuum, cavity, coupling, klystron 859
 
  • U. Ellenberger, H. Blumer, M. Heusser, M. Kleeb, L. Paly, M. Probst, T. Stapf
    Paul Scherrer Institute, Villigen PSI, Switzerland
  • M. Bopp, A. Citterio, R. Zennaro
    PSI, Villigen PSI, Switzerland
 
  A pulse compressor is required to compress the RF power distributed to the four accelerating structures of a single C-band (5712 GHz) module of the SwissFEL. The pulse compressor is of the barrel open cavity (BOC) type. A total of 26 BOC devices are necessary to operate the linear accelerator (26 modules or 104 C-band structures) of SwissFEL X-ray laser. The C-band BOC combines the advantages of compactness and large RF efficiency i.e. large compression factor. Key features of the BOC are described and how they have been implemented in the manufacturing and tuning processes. RF measurements of the BOC are presented to account for the mechanical precision reached by manufacturing. Up to August 2014 about 6 BOCs have been manufactured in-house and one has been high power tested in a RF test stand to simulate the operation in SwissFEL.  
 
THP063 Production of C-band Disk-loaded type CG Accelerating Structures vacuum, operation, cavity, acceleration 885
 
  • N. Shigeoka, S. Miura, D. Suzuki
    MHI, Hiroshima, Japan
  • T. Asaka, T. Inagaki, Y. Otake, T. Sakurai
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • H. Ego
    JASRI/SPring-8, Hyogo-ken, Japan
 
  In April 2013, MITSUBISHI HEAVY INDUSTRIES, LTD. contracted with RIKEN to produce six C-band disk-loaded type and constant gradient (CG) accelerating structures for removal of SCSS. These structures were newly designed by RIKEN for operation with an acceleration gradient of over 45 MeV/m and a repletion rate of 120 pps. The first structure was delivered in August 2013 to RIKEN and the other five was also delivered in March 2014. The accelerating structures were stacked from one hundred accelerating cells and formed by the vacuum brazing method. These cells using oxygen free copper were ultra-precisely machined. Unlike the C-band choke-mode type structures, which MHI manufactured in past for SACLA, the accelerating cells of the CG structure can be tuned after the brazing by pushing dimpling at the tuning hole of each cell. Demands of a VSWR < 1.1 and a phase error < 3 degree are fulfilled after the tuning by using the nodal shift method, which corrects cell frequency shifts due to the machining errors of cells and a cell’s deformation by the heat cycle of the brazing. The detailed results of the production and low-power RF tests will be presented in this presentation.  
poster icon Poster THP063 [0.623 MB]