Paper | Title | Other Keywords | Page |
---|---|---|---|
THP040 | Status of Pump-probe Laser Development for the European XFEL | laser, controls, timing, hardware | 807 |
|
|||
The European XFEL is under construction and is designed to become a multi-user facility. Three SASE beam lines with two experimental areas each are foreseen to guarantee a high user throughput. In order to enable the full scientific potential of the facility, optical laser pulses for either pumping or probing samples will be deployed regularly. We are presenting the pump-probe laser concept and the current status of the development, showing some experimental results of the prototype laser, achieved to date. The main emphasis of the presentation lies on the integration of the laser system into Karabo, the emerging control system of the European XFEL. | |||
THP080 | A Low-Cost, High-Reliability Femtosecond Laser Timing System for LCLS | laser, timing, controls, cavity | 917 |
|
|||
Funding: Work supported by DOE Contract DE-AC02-76-SF00515 LCLS has developed a low-cost, high-reliability radio-frequency-based locking system which provides phase locking with sub-25-femtosecond jitter for the injector and experiment laser systems. This system does not add significantly to the X-ray timing jitter from the accelerator RF distribution. The system uses heterodyne RF locking at 3808 MHz with an I/Q vector phase shifter and variable event receiver triggers to control the timing of the emission of the amplified laser pulse. Controls software provides full automation with a single process variable to control the laser timing over a 600 microsecond range with up to 4 femtosecond resolution, as well as online diagnostics and automatic error correction and recovery. The performance of this new locking system is sufficient for experiments with higher-precision timing needs that use an X-ray/optical cross-correlator to record relative photon arrival times. |
|||