Keyword: extraction
Paper Title Other Keywords Page
MOPAB016 Small Longitudinal Emittance Setup in Injectors with Gold Beam for Beam Energy Scan in RHIC emittance, operation, luminosity, cavity 90
 
  • H. Huang, C.J. Gardner, C. Liu, V. Schoefer, K. Zeno
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In recent years, RHIC physics program calls for gold beam collisions with energies at and lower than the nominal RHIC injection energy. To get shorter bunches at the three higher energies (9.8GeV/c, 7.3GeV/c and 4.75GeV/c), RHIC 28MHz cavities were used. The longitudinal emittance out of injectors needs to fit in the 28MHz cavities in RHIC. At two lower energies (4.6 and 3.85 GeV/c), the 9MHz RF cavities were used, which set different requirements from injectors. Extensive beam studies were carried out to establish needed beam parameters, such as bunch intensities and longitudinal emittances. In general, enough intensity can be provided for all energies within the longitudinal emittance constraint. This paper summarizes the recent injector operation experiences for various energies.
 
poster icon Poster MOPAB016 [2.641 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB016  
About • paper received ※ 16 May 2021       paper accepted ※ 17 August 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB045 Measurements and Simulations of High Charge Beam in the APS Booster booster, injection, simulation, cavity 197
 
  • J.R. Calvey, J.C. Dooling, K.C. Harkay, K.P. Wootton, C. Yao
    ANL, Lemont, Illinois, USA
 
  For the APS-Upgrade, swap-out injection will require the booster to support up to 17 nC bunch charge, several times what is used in the present APS. Booster injection efficiency drops sharply at high charge, and is the present bottleneck limiting high charge transport through the injectors. Particle tracking simulations have been used to understand what causes are limiting the injection efficiency, and to guide plans for improving it. In particular, bunch length blowup in the injected beam and beam loading in the RF cavities have been identified as the biggest factors. Simulations and measurements have also been done to characterize beam properties along the booster energy ramp. So far, a bunch charge of 12 nC has been successfully extracted from the booster.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB045  
About • paper received ※ 19 May 2021       paper accepted ※ 26 July 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB046 Plan for Operating the APS-Upgrade Booster with a Frequency Sweep injection, booster, cavity, emittance 201
 
  • J.R. Calvey, T.G. Berenc, A.R. Brill, L. Emery, T. Fors, K.C. Harkay, T.J. Madden, N. Sereno, U. Wienands
    ANL, Lemont, Illinois, USA
  • A. Gu
    UCB, Berkeley, California, USA
 
  The APS-Upgrade presents several challenging demands to the booster synchrotron. Swap-out injection requires the booster to capture a high charge bunch (up to 17 nC), accelerate it to 6 GeV, and maintain a low emittance at extraction for injection into the storage ring. To accommodate these conflicting demands, the RF frequency will be ramped between injection and extraction. However, the RF cavity tuners will remain static, which means the couplers will need to withstand a high reflected power at extraction. This paper presents a plan for a system that will meet the requirements for injection efficiency, extracted emittance, and equivalent power at the coupler. Results from tracking simulations and beam studies with a frequency ramp will also be shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB046  
About • paper received ※ 28 May 2021       paper accepted ※ 02 June 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB071 Progress with the Booster Design for the Diamond-II Upgrade booster, injection, emittance, storage-ring 286
 
  • I.P.S. Martin, C. Christou, M.P. Cox, R.T. Fielder, J. Kallestrup, A. Shahveh, W. Tizzano
    DLS, Oxfordshire, United Kingdom
  • A.D. Brynes, J.K. Jones, B.D. Muratori, H.L. Owen
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Efficient injection into the Diamond-II storage ring [*, **] will require an emittance and bunch length substantially below the values produced from the existing booster. Whilst an earlier design for a replacement based on TME cells was able to meet the target values of <30 nm.rad and <40 ps respectively [***, ****], several technical constraints have led to a rethink of this solution. The revised booster lattice utilises a larger number of cells based on combined-function magnets with lower peak fields that still meets the emittance and bunch length goals. In addition, the new ring has been designed to have low impedance to maximise the extracted charge per shot. In this paper we describe the main features of the lattice, present the status of the engineering design and quantify the expected performance.
*Diamond-II Conceptual Design Report, Diamond Light Source
**H. Ghasem et al, these proceedings
***I. Martin, R. Bartolini, J.Phys.:Conf. Ser., 1067, 032005
****I. Martin et al, IPAC 2019, WEPMP042
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB071  
About • paper received ※ 18 May 2021       paper accepted ※ 31 May 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB082 Implementation of Using IGBT Switch Based Pulser for TPS Booster Extraction Kicker kicker, booster, injection, operation 315
 
  • C.-S. Fann, H.-P. Chang, C.L. Chen, Y.-S. Cheng, K.T. Hsu, S.Y. Hsu, K.-K. Lin, K.L. Tsai, C.Y. Wu
    NSRRC, Hsinchu, Taiwan
 
  A pair of thyratron-switch-based pulse-forming-network (PFN) pulser has been operating successfully in the past 5 years for TPS booster extraction kickers. In order to improve the flattop of drive-current pulse and to extend possible electron bunch train adjusting knob required, an IGBT-switch-based pulser has been designed, fabricated, and installed onto the TPS booster for its characteristics verification. In this report, the overall technical considerations for the pulser upgrade is described and its beam commissioning results is given for illustration purpose.  
poster icon Poster MOPAB082 [0.621 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB082  
About • paper received ※ 20 May 2021       paper accepted ※ 27 May 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB110 An Electron Synchrotron Lattice Based on Theoretic Minimal Emittance Cell emittance, lattice, sextupole, synchrotron 403
 
  • H.C. Chao
    DESY, Hamburg, Germany
 
  A design of an electron synchrotron featuring the theoretic minimal emittance (TME) cells is presented. It has 32 superperiods and the circumference is around 300 m. It offers versatile functions with the equilibrium emittance less than 10 nm-rad at 6 GeV. The beam energy can go up to 7 GeV. Locations with proper phase advances are found to form effective vertical orbit bumps, which can be used for the injections and extraction. A tune scan study shows the sweet spot for the working point. Some discussions of other usages and studies of synchro-betatron coupling effects are also included in this article.  
poster icon Poster MOPAB110 [0.777 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB110  
About • paper received ※ 11 May 2021       paper accepted ※ 28 May 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB114 Development of a Decoherence Kicker for the ALS Upgrade Project (ALS-U) kicker, storage-ring, vacuum, injection 414
 
  • C. Sun, S. De Santis, M.P. Ehrlichman, T. Hellert, T. Oliver, G. Penn, C. Steier, M. Venturini, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory is upgrading the existing storage-ring lattice to a nine-bend-achromat lattice with on-axis swap-out injection. The upgraded storage ring will provide a highly focused beam of about 10 um in both horizontal and vertical directions with a single bunch train energy of about 60 J at 2.0 GeV. Such a small and intense beam could cause damage to the transfer line vacuum chambers in case of extraction element failures or damage to the storage ring vacuum chamber in case of RF failures. To mitigate these potential damages, a fast kicker magnet (so-called decoherence kicker) will be installed in the ALS-U storage ring and activated to dilute the beam charge density either on a train to be swapped out a few 100s turns before extraction or on the whole beam after RF failures. In this paper, we will present both physics and engineering designs of this decoherence kicker.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB114  
About • paper received ※ 19 May 2021       paper accepted ※ 27 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB115 ATS/STA Transfer Line Design for the ALS Upgrade Project (ALS-U) injection, storage-ring, kicker, optics 417
 
  • C. Sun, M.P. Ehrlichman, T. Hellert, M. Juchno, J.-Y. Jung, M. Mardenfeld, J.R. Osborn, G. Penn, C. Steier, C.A. Swenson, M. Venturini
    LBNL, Berkeley, California, USA
 
  At the Advanced Light Source Upgrade (ALS-U), an on-axis swap-out injection will be used to replenish depleted bunches in the storage ring with refreshed bunches from the full energy accumulator ring. To implement this scheme, two transfer lines are required between the storage ring and the accumulator ring: the accumulator-to-storage-ring (ATS) transfer line and the storage-ring-to-accumulator (STA) transfer line. The design of the ATS/STA transfer lines is a challenging task as they must fit within a tight injection region while also accommodating the storage and accumulator rings at different elevations. Moreover, the ATS/STA design needs to meet both the boundary conditions and optics requirements. In this paper, we will present a design option for these ATS/STA transfer lines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB115  
About • paper received ※ 19 May 2021       paper accepted ※ 27 May 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB180 AGS Dynamic Aperture at Injection of Polarized Protons and Helions dynamic-aperture, coupling, proton, injection 610
 
  • K. Hock, H. Huang, F. Méot, N. Tsoupas
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Polarized helions are part of the physics program for the future EIC. An AC dipole has been installed in the AGS Booster to preserve polarization as helions are accelerated to |Ggamma|=10.5. Extraction from the AGS Booster at |Ggamma|=7.5 is possible but: would involve crossing an intrinsic resonance in the AGS, and would be the lowest rigidity beam injected into the AGS, and therefore experiences strong distortions of the optical functions because of the AGS two partial snakes. This lower rigidity would exacerbate the optical distortions from the snake, reducing the dynamic aperture. A comparison of the dynamic aperture of protons at Ggamma=4.5 to that of helions at |Ggamma|=7.5 and |Ggamma|=10.5 show that extraction at |Ggamma|=10.5 provides a larger dynamic aperture. This larger aperture would allow helions to be placed inside the spin tune gap generated by the two partial helices in AGS earlier in the cycle.
 
poster icon Poster MOPAB180 [0.453 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB180  
About • paper received ※ 17 May 2021       paper accepted ※ 31 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB181 Non-Delivery Time Reduction at MedAustron proton, dipole, synchrotron, MMI 613
 
  • L. Adler, S. Danzinger, F. Farinon, F. Feichtinger, G. Guidoboni, N. Kahn, C. Kurfürst, D.A. Prokopovich, A. Wastl
    EBG MedAustron, Wr. Neustadt, Austria
  • L.C. Penescu
    Abstract Landscapes, Montpellier, France
 
  Funding: Funding by the NÖ WIRTSCHAFTS- UND TOURISMUSFONDS under grant number WST3-F-5033232/001-2020.
MedAustron is a cancer treatment center in Austria providing proton and carbon ion beams to three clinical and one non-clinical research beam lines. The slow extraction of particles from the synchrotron follows a third order resonance extraction scheme. Currently, for every change of extraction energy a new spill needs to be generated. Besides the beam-on time of the particle delivery, every spill is also comprised of non-delivery time components e.g. the multiturn injection, acceleration or magnet conditioning. For small tumor target volumes, this non-delivery time is the major contribution to the overall treatment time. A dedicated performance improvement project (supported with a grant from the state of lower Austria) was executed with the goal to reduce these non-delivery times without affecting important clinical beam parameters such as the beam size or penetration depth. The implemented reduction of the non-delivery time >50% could be achieved, resulting in beam-on time reductions for reference treatment plans between 25% (largest proton PTV) and 58% (smallest carbon PTV). Results of commissioning efforts, technical details and the achieved optimizations will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB181  
About • paper received ※ 14 May 2021       paper accepted ※ 28 May 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB189 Beam Commissioning of XiPAF Synchrotron synchrotron, injection, MMI, experiment 639
 
  • H.J. Yao, X. Guan, Y. Li, X.Y. Liu, M.W. Wang, X.W. Wang, Y. Yang, W.B. Ye, H.J. Zeng, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • W.L. Liu, D. Wang, Z.M. Wang
    NINT, Shannxi, People’s Republic of China
 
  XiPAF (Xi’an 200MeV Proton Application Facility) is a project to fulfill the need for the experimental simulation of the space radiation environment. It comprises a 7 MeV H linac, a 60-230 MeV proton synchrotron, and experimental stations. The Installation of the synchrotron, beamline and one experimental station were completed at the end of December 2019, and commissioning has just begun. Circulating beam around the synchrotron was observed on the first day of operation, and now 10-200 MeV proton beam directly extracted from the synchrotron had been transported to the experimental station for user experiments. The results of the commissioning and data analysis are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB189  
About • paper received ※ 18 May 2021       paper accepted ※ 21 May 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB200 Parameters Measurements of Proton Beam Extracted from CSNS/RCS emittance, target, MMI, neutron 668
 
  • Z.P. Li, Y.W. An, M.Y. Huang
    IHEP, Beijing, People’s Republic of China
  • Y. Li, S.Y. Xu
    DNSC, Dongguan, People’s Republic of China
  • H.Y. Liu
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  In order to study the emittance evolution of the circulating beam in the fast-cycling synchrotron (RCS) of the Chinese Spallation Neutron Source (CSNS), parameter measurements of the beam extracted at different times were carried out. The measurements were mainly based on wire-scanners mounted in RCS to target transport line (RTBT) for beam profile measurement, and different methods were applied in the solution processes. The emittance and C.S parameters of the extracted beam at different times were obtained and studied, which provided an important reference basis for the beam commissioning of RCS. The beam envelope along the RTBT has been matched and re-measured, which was in good agreement with the design optics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB200  
About • paper received ※ 19 May 2021       paper accepted ※ 21 May 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB253 Comparison of Transfer Map Derivation Methods for Static Magnetic Fields multipole, quadrupole, lattice, operation 799
 
  • J.A. Crittenden, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by National Science Foundation award numbers DMR-1829070 and PHY-1757811.
We compare methods for deriving transfer maps for static magnetic fields, including field-map tracking and tracking elements defined by multipole content. Building on prior work on quantitative evaluation of the accuracy of finite-element models used to produce field maps, we assess the tradeoffs between computing time and fidelity to the underlying magnetic field, including fringe fields, of the various approximate methods. We illustrate our approach using the example of electromagnets in the south arc of the 6-GeV Cornell High Energy Synchrotron Source, which have been operating since 2019.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB253  
About • paper received ※ 19 May 2021       paper accepted ※ 18 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB269 Three Approaches for Complete Measurement of the Transverse Beam Optics Along the Fermilab Muon Campus Extraction Line quadrupole, dipole, optics, real-time 854
 
  • B.D. Simons, M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
  • D. Stratakis, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work was supported through grant DE-SC0020379 with the United States Department of Energy.
Traditionally, the process of measuring the optical parameters of a beamline has employed the use of one of two standard methods, namely the three-screen method or a quadrupole magnet scan. Both require either an area of zero dispersion to perform the measurements or knowledge of the dispersion function and momentum spread beforehand in order to provide accurate results. There is however a third method that can be used to measure the standard optical parameters, the beam parameters, the dispersion function, and the momentum spread simultaneously. This method, aptly named the six-screen method, is an extension of the more standard three-screen method. Utilizing the simulation environment of G4beamline, we simulated the 8 GeV proton beam in the M4 beamline and measured the optical and beam parameters using the two standard approaches. Those results were then used as a reference to check the viability of employing the less standard six-screen method in the M4 line. If shown to be a viable option, the six-screen method could be used to retrieve the dispersion function and momentum spread of the beam without needing to change the energy of the beam.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB269  
About • paper received ※ 20 May 2021       paper accepted ※ 07 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB414 A Novel Facility for Cancer Therapy and Biomedical Research with Heavy Ions for the South East European International Institute for Sustainable Technologies synchrotron, injection, experiment, radiation 1244
 
  • S. Damjanovic, P. Grübling, H. Schopper
    SEEIIST, Geneva, Switzerland
  • U. Amaldi, E. Benedetto, M. Sapinski
    TERA, Novara, Italy
  • E. Benedetto, G. Bisoffi, M. Dosanjh, M. Sapinski, M. Vretenar
    CERN, Meyrin, Switzerland
  • G. Bisoffi
    INFN/LNL, Legnaro (PD), Italy
  • S. Damjanovic, M. Durante, P. Foka, C. Graeff
    GSI, Darmstadt, Germany
  • Th. Haberer
    HIT, Heidelberg, Germany
  • S. Rossi
    CNAO Foundation, Milan, Italy
  • H.J. Specht
    Universität Heidelberg, Heidelberg, Germany
 
  The South East European International Institute for Sustainable Technologies (SEEIIST) proposes the construction of a major joint Research Infrastructure in the region, to rebuild cooperation after the recent wars and overcome lasting consequences like technology deficits and brain drain, having at its core a facility for cancer therapy and biomedical research with heavy ions. Beams of ions like Carbon are an advanced way to irradiate tumours but more research is needed, while the higher investment costs than for other radiation treatments have so far limited the European facilities to only four. This initiative aims at being strongly innovative, beyond the existing European designs. While the initial baseline relies on a conservative warm-magnet synchrotron, superconducting magnets for an advanced version of the synchrotron and for the gantry are being developed, with a potential for reductions in size, cost, and power consumption. Both warm and superconducting designs feature high beam intensity for faster treatment, and flexible extraction for novel treatment methods. A novel injector linac has the potential for producing radioisotopes in parallel with synchrotron injection.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB414  
About • paper received ※ 17 May 2021       paper accepted ※ 06 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXB07 High-Current H2+ Beams from a Compact Cyclotron using RFQ Direct Injection cyclotron, rfq, simulation, ion-source 1301
 
  • D. Winklehner, J.M. Conrad, D. Koser, J. Smolsky, L.H. Waites
    MIT, Cambridge, Massachusetts, USA
 
  Funding: This work was supported by NSF grants PHY-1505858 and PHY-1626069.
For the IsoDAR neutrino experiment, we have developed a compact and cost-effective cyclotron-based driver to produce high current beams (cw proton beam currents of >10 mA at 60 MeV). This is a factor of 4 higher than the current state-of-the-art for cyclotrons and a factor of 10 compared to what is commercially available. All areas of physics that call for high cw currents can greatly benefit from this result; e.g. particle physics, medical isotope production, and energy research. This increase in beam current is possible in part because the cyclotron is designed to include and use vortex-motion, allowing clean extraction. Such a design process is only possible with the help of high-fidelity codes, like OPAL. Another novelty is the use of an RFQ embedded in the cyclotron yoke to bunch the beam during axial injection. Finally, using H2+ relieves some of the space charge constraints during injection. In this paper, we will give an overview of the project and then focus on the design and simulations of the cyclotron itself. We will describe the physics, computational tools, and simulation results. At the end, we will describe how we are including machine learning in the simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUXB07  
About • paper received ※ 27 May 2021       paper accepted ※ 22 July 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB023 Design Considerations of a High Intensity Booster for PETRA IV lattice, injection, emittance, booster 1386
 
  • H.C. Chao, I.V. Agapov, S.A. Antipov
    DESY, Hamburg, Germany
 
  A 6 GeV booster lattice with a high intensity capacity for the PETRA IV project is presented. Firstly the requirements and constraints are articulated. Due to the geometric constraints the ring will be installed in racks mounted on ceilings. Then following some design strategies of reaching high intensity limit, a lattice is designed and presented. The topics covering the linear optics, nonlinear dynamics, orbit correction, orbit bump, and some instability studies are investigated.  
poster icon Poster TUPAB023 [0.975 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB023  
About • paper received ※ 11 May 2021       paper accepted ※ 11 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB186 Longitudinal Dynamics in the Prototype vFFA Ring for ISIS2 acceleration, bunching, injection, neutron 1834
 
  • D.J. Kelliher, J.-B. Lagrange, S. Machida, C.R. Prior, C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • A.P. Letchford, J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • E. Yamakawa
    JAI, Egham, Surrey, United Kingdom
 
  A vertical Fixed Field Accelerator (vFFA) is a candidate for a future high-power (MW-class) spallation source at ISIS. In order to assess the feasibility of this novel ring, a prototype is currently being designed. Here we consider the longitudinal dynamics in the prototype ring. A key requirement of future neutron spallation sources is flexibility of operation to best serve multiple target stations. Beam stacking allows a rapid cycling, high intensity machine to operate at lower repetition rates but with higher peak output. Here we show how beam stacking can be realised in the vFFA while minimising the peak RF voltage required.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB186  
About • paper received ※ 19 May 2021       paper accepted ※ 17 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB187 Reconstruction of U400M Cyclotron: Upgrade of U400M Cyclotron Magnetic Structure cyclotron, operation, MMI, ECR 1838
 
  • I.A. Ivanenko, G.G. Gulbekyan, I.V. Kalagin, N.Yu. Kazarinov, N.F. Osipov, V.A. Semin
    JINR, Dubna, Moscow Region, Russia
 
  U400M isochronous cyclotron was created on the base of U300 classic cyclotron and is under operation at FLNR, JINR since 1996. At the present time the cyclotron electromagnet with 4 meter pole diameter needs a reconstruction that includes a replacement of magnet main coil, corrections of the magnetic field at the central region and at the extraction radius. For measurements and shimming of cyclotron magnetic field the automatic mapping system, based on 14 Hall probes, will be created.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB187  
About • paper received ※ 18 May 2021       paper accepted ※ 26 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB188 InnovaTron: An Innovative High-Intensity Industrial Cyclotron for Production of Tc-99m and Other Frontier Medical Radioisotopes* cyclotron, ion-source, proton, acceleration 1841
 
  • G. D’Agostino, Q. Flandroy, E. Forton, W.J.G.M. Kleeven, J. Mandrillon, V. Nuttens, E. van der Kraaij
    IBA, Louvain-la-Neuve, Belgium
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 886190.
Tc-99m is the most used radioisotope in nuclear medicine. It is almost exclusively produced with a few ageing research reactors worldwide. In response to growing concerns about Tc-99m availability and its increasing demand, alternative production routes are being explored. The EU-funded InnovaTron project aims at designing an innovative compact high-intensity self-extracting cyclotron able to deliver proton beams with currents up to 5 mA or more for the direct production of Tc-99m. It could be also used for production of high quantities of other frontier medical radioisotopes. The proton beams exit without using an electrostatic deflector to overcome its current limitations. A prototype cyclotron was built by IBA in 2001. Currents up to 2 mA were extracted from it. However, at higher intensities, the extraction efficiency was not higher than 70-75% and the extracted emittance was rather large. The InnovaTron project will implement new technological solutions in the self-extracting cyclotron to be used for large-scale industrial applications. An overview on the InnovaTron project is here presented together with the first simulation results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB188  
About • paper received ※ 18 May 2021       paper accepted ※ 01 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB190 Design and Simulation of the Extraction System of DC140 Cyclotron cyclotron, focusing, quadrupole, septum 1849
 
  • V.I. Lisov, A.A. Protasov, A.S. Zabanov
    JINR/FLNR, Moscow region, Russia
  • K. Gikal, G.G. Gulbekyan, I.A. Ivanenko, G.N. Ivanov, I.V. Kalagin, N.Yu. Kazarinov, S.V. Mitrofanov, N.F. Osipov, V.A. Semin
    JINR, Dubna, Moscow Region, Russia
 
  Flerov Laboratory of Nuclear Reaction of Joint Institute for Nuclear Research carries out the works under creating of FLNR JINR Irradiation Facility based on the cyclotron DC140. The facility is intended for SEE testing of microchip, for production of track membranes and for solving of applied physics problems. The DC140 cyclotron is intended for acceleration of heavy ions with mass-to-charge ratio A/Z within interval from 5 to 5.5 up to two fixed energies 2.124 and 4.8 MeV per unit mass. The intensity of the accelerated ions will be about 1 pmcA for light ions (A<86) and about 0.1 pmcA for heavier ions (A>132). The system based on four main elements - electrostatic deflector, focusing magnetic channel, Permanent Magnet Quadrupole lens and steering magnet is used in the DC140 cyclotron for extraction of the accelerated beam. The design and simulation of the beam extraction system from the DC140 cyclotron are presented in this report.  
poster icon Poster TUPAB190 [1.102 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB190  
About • paper received ※ 18 May 2021       paper accepted ※ 02 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB231 Cooling of an Annular Beam by Using Nonlinear Effects resonance, dipole, emittance, proton 1968
 
  • F. Capoani, M. Giovannozzi, R. Tomás García
    CERN, Geneva, Switzerland
  • A. Bazzani, F. Capoani
    Bologna University, Bologna, Italy
 
  In recent years, nonlinear effects have been used to modify the transverse beam distribution by crossing nonlinear resonances adiabatically. This allows generating transversally split beams, in which the initial single Gaussian is divided into several ones depending on the order and stability type of the resonance used. Nonlinear effects could be used to try and cool a beam by acting on its transverse beam distribution. In this paper, we present and discuss the special case of a beam with an annular distribution, showing how the resulting emittance could be reduced by means of nonlinear effects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB231  
About • paper received ※ 10 May 2021       paper accepted ※ 16 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB232 Linear Coupling and Adiabaticity of Emittance Exchange resonance, coupling, emittance, proton 1972
 
  • F. Capoani, M. Giovannozzi
    CERN, Geneva, Switzerland
  • A. Bazzani, F. Capoani
    Bologna University, Bologna, Italy
  • A.I. Neishtadt
    IKI, Moscow, Russia
  • A.I. Neishtadt
    Loughborough University, Leicestershre, United Kingdom
 
  In circular accelerators, crossing the coupling resonance induces the exchange of the transverse emittances, provided the process is adiabatic. In this paper, we introduce a theoretical framework to analyze the resonance-crossing process, based on Hamiltonian mechanics, which is capable of explaining all the features of the emittance exchange process.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB232  
About • paper received ※ 11 May 2021       paper accepted ※ 16 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB240 The Impact of Trajectory-Shaped Coil on the Beam Dynamics in the SC230 Superconducting Cyclotron cyclotron, betatron, proton, induction 2002
 
  • I.D. Lyapin, O. Karamyshev, V. Malinin, D. Popov
    JINR/DLNP, Dubna, Moscow region, Russia
  • G.A. Karamysheva
    JINR, Dubna, Moscow Region, Russia
 
  In this paper, we compared the effect of the cyclotron coil shape on the beam dynamics. Two models were created. The first has a conventional round coil, the second has a coil that follows the trajectory of the protons. Parameters of extracted beams are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB240  
About • paper received ※ 19 May 2021       paper accepted ※ 27 May 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB363 Feasibility Study for the Novel CERN PS Fast Extraction Septum septum, simulation, HOM, emittance 2363
 
  • T. Helseth, M.G. Atanasov, B. Balhan, J.C.C.M. Borburgh, L. Ducimetière, M.A. Fraser, T. Kramer
    CERN, Geneva, Switzerland
 
  In the framework of accelerator consolidation, a feasibility study for a novel CERN PS extraction septum has been conducted. Functional requirements have been established and, accordingly, a system of two septa magnets and their associated pulse generator is proposed. The magnetic septum design is based on eddy current topology. Magnetic simulations in Flux 2D and Opera 3D of a conceptual design have been carried out. The short length and high amplitude of the current pulse required to drive the eddy current septa imply that none of the power converters currently used for septa magnets at CERN will be suitable. Pulse generator topologies derived from kicker generators have therefore been explored and simulated in Spice. The conceptual magnet and generator design along with simulation results are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB363  
About • paper received ※ 18 May 2021       paper accepted ※ 17 June 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB402 Review of Technologies for Ion Therapy Accelerators synchrotron, proton, linac, heavy-ion 2465
 
  • H.X.Q. Norman, R.B. Appleby, A.F. Steinberg
    UMAN, Manchester, United Kingdom
  • E. Benedetto
    TERA, Novara, Italy
  • E. Benedetto, M. Sapinski
    CERN, Meyrin, Switzerland
  • H.L. Owen
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H.L. Owen
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Sapinski
    GSI, Darmstadt, Germany
  • S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
 
  Cancer therapy using protons and heavier ions such as carbon has demonstrated advantages over other radiotherapy treatments. To bring about the next generation of clinical facilities, the requirements are likely to reduce the footprint, obtain beam intensities above 1E10 particles per spill, and achieve faster extraction for more rapid, flexible treatment. This review follows the technical development of ion therapy, discussing how machine parameters have evolved, as well as trends emerging in technologies for novel treatments such as FLASH. To conclude, the future prospects of ion therapy accelerators are evaluated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB402  
About • paper received ※ 19 May 2021       paper accepted ※ 28 July 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXB07 Transverse Beam Profile Measurements from Extraction Losses in the PS septum, kicker, emittance, proton 2548
 
  • J.R. Hunt, F. Cerutti, L.S. Esposito, M. Giovannozzi, A. Huschauer, G. Russo
    CERN, Geneva, Switzerland
  • G. Russo
    Goethe Universität Frankfurt, Frankfurt am Main, Germany
 
  During Multi-Turn Extraction (MTE) of continuous beams in the Proton Synchrotron (PS) at CERN, losses are generated on the blade of both the active and non-active septum during the rise time of the extraction kickers. Utilising pCVD Diamond detectors, secondary signal generated from these losses is measured. The high time resolution of these devices allows for insight into the detail of the horizontal beam distribution during extraction, and hence useful information such as the horizontal beam emittance may be computed. In this contribution, FLUKA simulations to relate the detector response to the beam impact conditions on the blades of the two septa are presented. The dependence on the beam angle, magnetic fringe field, and positioning of the detector is explored. Finally, realistic beam distributions are used to determine expected signal profiles at each septum.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXB07  
About • paper received ※ 18 May 2021       paper accepted ※ 20 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB120 Upgrades to the Booster to Storage Ring Transfer Line at the Canadian Light Source booster, septum, storage-ring, injection 2881
 
  • W.A. Wurtz, T. Batten, B.E. Bewer, M. Bree, S.R. Carriere, A.M. Duffy, B. Fogal, L.X. Lin, C.M. Randall, B.A. Schneider, J.M. Vogt, J. Willard, T. Wilson
    CLS, Saskatoon, Saskatchewan, Canada
  • P. Kuske
    HZB, Berlin, Germany
 
  Investigations into the booster to storage ring transfer process identified non-linear fields in the booster extraction septum as the cause for the poor transfer efficiency. We found that by correcting the trajectory through the septum, the transfer efficiency improved substantially. This motivated an upgrade project to reliably control the trajectory through the septum and transfer line, to provide improved diagnostics and to implement a set of four horizontal scrapers to reduce the horizontal emittance of the beam before it reaches the storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB120  
About • paper received ※ 10 May 2021       paper accepted ※ 24 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB141 Preliminary Simulation of CERN’s Linac4 H Source Beam Formation plasma, simulation, electron, linac 2947
 
  • A. Vnuchenko, J. Lettry
    CERN, Geneva, Switzerland
  • U. Fantz, S. Mochalskyy, D. Wünderlich
    MPI/IPP, Garching, Germany
  • T. Minea, A. Revel
    CNRS LPGP Univ Paris Sud, Orsay, France
 
  Linac4 is the new (H) linear injector of CERN’s accelerator complex. This contribution describes the modelling activities required to get insight into H beam formation processes and their impact on beam properties. The simulation region starts from a homogeneous hydrogen plasma, the plasma then expands through the magnetic filter field. H ions and electrons are electrostatically extracted through the meniscus (line of separation between the plasma and the extracted beam) and eventually accelerated. The physics is simulated via the 3D PIC code ONIX. This code, originally dedicated to ITER’s neutral injector sources, has been modified to match single aperture sources. A new type of boundary condition is described, as well as the field distribution and geometry of the standard IS03 and a dedicated proto-type of CERN’s Linac4 H source. A plasma electrode prototype designed to provide metallic boundary conditions was produced and tested. This plasma electrode geometry enables Optical Emission Spectroscopy in the region closest to meniscus. A set of plasma parameters was chosen as input characterizing the plasma. Preliminary simulation results of beam formation region are presented.  
poster icon Poster WEPAB141 [0.710 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB141  
About • paper received ※ 18 May 2021       paper accepted ※ 02 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB178 Non-Adiabatic Longitudinal Bunch Manipulation at Flattop of the J-PARC MR bunching, kicker, experiment, flattop 3023
 
  • F. Tamura
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • C. Ohmori, Y. Sugiyama, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
 
  The J-PARC MR delivers the high-intensity proton beams for the neutrino experiment. Eight bunches of high peak current are extracted by the extraction kickers, therefore the neutrino beam has a similar time structure. The new Intermediate Water Cherenkov Detector (IWCD) will be constructed for the future neutrino experiment and a low peak time structure is desired by the IWCD. Thus, we consider bunch manipulation at flattop of the MR for reducing the peak current. The manipulation requires a longer repetition period to extend the flattop. This reduces the output beam power. The manipulation should be quickly done to minimize the loss of the beam power. Also, the beam gap must be kept for the rise time of the extraction kicker. We propose a non-adiabatic bunch manipulation using the multiharmonic rf voltage. By using the neighbor harmonic of the accelerating harmonic, the first and eighth bunches can be decelerated and accelerated, respectively. After a certain period, the rf phase is flipped to pi for debunching. Thanks to the initial deceleration and acceleration, the beam gap for the kickers is kept. We present the concept and the longitudinal simulation result.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB178  
About • paper received ※ 17 May 2021       paper accepted ※ 25 June 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB192 Simulation Study on Double Diffuser for Loss Reduction in Slow Extraction at J-PARC Main Ring simulation, operation, proton, scattering 3069
 
  • R. Muto, Y. Arakaki, T. Kimura, S. Murasugi, K. Okamura, Y. Shirakabe, M. Tomizawa, E. Yanaoka
    KEK, Tokai, Ibaraki, Japan
  • A. Matsumura
    Nihon Advanced Technology Co., Ltd, Ibaraki, Nakagun, Tokaimura, Japan
 
  J-PARC (Japan Proton Accelerator Research Complex) Main Ring delivers slow-extracted 30~GeV proton beam to various nuclear and particle physics experiments. In the slow extraction the beam loss at the electrostatic septum (ESS) is inevitable, and the beam loss reduction is a key issue to realize the high-intensity beam delivery. We carried out simulation studies on the effectiveness of the beam diffusers at the upstream of the ESS for the beam loss reduction with various materials and dimensions of the diffusers. We found out that putting two diffusers simultaneously on the beam was effective for the beam loss reduction, and the expected beam loss was 0.35 times as high as the operation without diffusers. According to the simulation results we installed the diffusers in the J-PARC Main Ring. We performed beam test with one diffuser and beam loss reduction of 60% was observed, which was in good agreement with the simulation results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB192  
About • paper received ※ 19 May 2021       paper accepted ※ 28 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB204 Layout of the New Septum Magnets for Fast Extraction in J-PARC Main Ring septum, operation, simulation, emittance 3103
 
  • S. Iwata, K. Ishii, H. Matsumoto, N. Matsumoto, Y. Sato, T. Shibata, T. Sugimoto
    KEK, Ibaraki, Japan
 
  At J-PARC Main Ring (MR), we are pursuing to improve the beam power from 500 kW to 1.3 MW by reducing the repetition cycle from 2.48 to 1.16 seconds (1 Hz operation). Additionally, we are considering the beam particles increasing by selecting a more optimal tune. The fast extraction (FX) equipment to the neutrino facility (NU) is needed to upgrade for the 1 Hz operation. We plan to replace most FX septum magnets with new ones in 2021. We report a layout of the FX line in confirmation of new beam optics and mention the beam loss during the fast extraction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB204  
About • paper received ※ 20 May 2021       paper accepted ※ 09 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB205 XiPAF Synchrotron Slow Extraction Commissioning experiment, synchrotron, proton, sextupole 3106
 
  • W.B. Ye, X. Guan, Y. Li, X.Y. Liu, M.W. Wang, X.W. Wang, Y. Yang, H.J. Yao, H.J. Zeng, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • W.L. Liu, D. Wang, M.C. Wang, Z.M. Wang, Y. Yang, M.T. Zhao
    NINT, Shannxi, People’s Republic of China
 
  Xi’an 200 MeV Proton Application Facility (XiPAF) is a project to fulfill the need for the experimental simulation of the space radiation environment. It comprises a 7 MeV H linac, a 60~230 MeV proton synchrotron, and experimental stations. Slow extraction commissioning for 60 MeV proton beam in XiPAF synchrotron has been finished. After commissioning, the maximal experiment extraction efficiency with the RF-knockout (RF-KO) method can up to 85%. The reason for beam loss has been analyzed and presented in this paper. Besides, an experiment of multiple energy extraction has been conducted in XiPAF synchrotron. The proton beams of 3 different energies were successfully extracted in 1.54 s.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB205  
About • paper received ※ 18 May 2021       paper accepted ※ 07 July 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB208 Energy Sweeping Beam Extraction by the Septum Magnet Assisted with Charge Exchange for a Hadron Therapy septum, kicker, power-supply, acceleration 3109
 
  • T.S. Dixit, A. Shaikh
    SAMEER, Mumbai, India
  • T. Adachi, T. Kawakubo, K. Takayama
    KEK, Ibaraki, Japan
 
  An energy sweeping compact rapid cycling hadron therapy based on a fast cycling induction synchrotron has been proposed by KEK and SAMEER as the next generation of hadron therapy machine *. For energy sweep extraction, a C+5 beam is injected, captured and trapped in the barrier bucket. A fraction of the beam is continuously released from the barrier bucket by controlling the timing of barrier pulse generation. Released C+5 ions merge into the coasting beam and moves inwards with ramping of the guiding main magnets. Ions in the coasting beam eventually hit the carbon foil placed inside the beam chamber wall. As a result, C+5 is converted to C+6 and beam orbit is largely changed as it traverses through the downstream bending magnet. This notably facilitates C+6 beam extraction, resulting in a relatively small kick angle of the septum magnet. When the septum is excited in the same way as that of the main magnets, the extracted C+6 beam always places on the center of the irradiation beam line. LISE++ simulations demonstrated the charge exchange efficiency of almost 100 % for expected beam energy. The feasibility of the switching power supply for the septum magnet has been studied.
* PRAB 24, 011601 (2021)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB208  
About • paper received ※ 14 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB244 Optimization and Machine Learning Applied to the RF Manipulations of Proton Beams in the CERN PS beam-loading, operation, simulation, cavity 3201
 
  • A. Lasheen, H. Damerau, S.C. Johnston
    CERN, Meyrin, Switzerland
 
  The 25 ns bunch spacing in the LHC is defined by a sequence of RF manipulations in the Proton Synchrotron (PS). Multiple RF systems covering a large range of revolution harmonics (7 to 21, 42, 84, 168) allow performing RF manipulations such as beam splitting, and non-adiabatic bunch shortening. For the nominal beam sent to LHC, each bunch is split in 12 in the PS. The relative amplitude and phase settings of the RF systems need to be precisely adjusted to minimize the bunch-by-bunch variations in intensity, longitudinal emittance, and bunch shape. However, due to transient beam-loading, the ideal settings, as well as the best achievable beam quality, vary with beam intensity. Slow drifts of the hardware may also affect beam quality. In this paper, automatized optimization routines based on particle simulations with intensity effects are presented, together with the first considerations of machine learning. The optimization routines are used to assess the best achievable longitudinal beam quality expected with the PS RF systems upgrades, in the framework of the LHC Injector Upgrade project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB244  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB284 Interlock System Upgrades at the CERN Accelerator Complex During Long Shutdown 2 injection, linac, booster, operation 3316
 
  • J.A. Uythoven, A. Antoine, C. Martin, A. Mirana Fontan, R. Mompo, I. Romera, R. Secondo
    CERN, Geneva, Switzerland
 
  The CERN accelerator complex stopped operation at the end of 2018 for the Long Shutdown 2 (LS2), allowing for the LHC Injector Upgrade program (LIU) and consolidation work to be accomplished. A gradual restart of the different accelerators is ongoing in 2021, culminating with the LHC foreseen to be back in operation early 2022. During LS2 a very large range of systems was modified throughout the accelerator complex. This includes the so-called Machine Interlock systems, which are at the heart of the overall machine protection system. This paper gives an overview of the Machine Interlock systems changes during LS2. It includes the installation of a Beam Interlock System (BIS) at the new linear accelerator LINAC4, at the PS-Booster and the installation of a new Injection BIS for the SPS synchrotron. New Safe Machine Parameter flags to protect the SPS transfer line mobile beam dumps against high intensity beams were put in place. The new Warm Magnet Controller (WIC) installations at LINAC4 the PS Booster and the different transfer lines and experimental areas are presented together with the modifications to the Power Interlock Controller protecting the LHC superconducting magnets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB284  
About • paper received ※ 17 May 2021       paper accepted ※ 02 July 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB341 Injection and Extraction Kickers for the Advanced Light Source Upgrade Project (ALS-U) kicker, storage-ring, impedance, injection 3487
 
  • W.L. Waldron, D.A. Dawson, S. De Santis, T. Oliver, C. Steier
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The Advanced Light Source upgrade project (ALS-U) at Lawrence Berkeley National Laboratory includes the construction of a new accumulator ring and the replacement of the existing storage ring. Both ferrite-loaded kickers and stripline kickers are used in the ALS-U design for injection, extraction, and decohering the beam before storage ring extraction. In the accumulator ring, the rise and fall time requirements are based on the single bunch revolution time of 608 ns which allows the use of ferrite-loaded kickers. The 10 ns spacing between bunch trains in the storage ring requires stripline kickers to meet the rise and fall time requirements. Both types of kickers are driven by solid-state inductive voltage adders using MOSFETs. Modeling and prototyping efforts have characterized the kicker impedance and beam-induced heating, and explored the effects of beam strike on electrodes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB341  
About • paper received ※ 20 May 2021       paper accepted ※ 27 July 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB346 Electromagnetic Modelling of Kicker Magnets to Derive Equivalent Circuits kicker, coupling, simulation, impedance 3506
 
  • M.J. Barnes, O. Bjorkqvist
    CERN, Geneva 23, Switzerland
  • L. Jensen, O.A. Nielsen
    Aarhus University, Aarhus, Denmark
 
  An equivalent circuit model of a kicker magnet system is an invaluable tool for predicting the performance, studying possible modifications and for helping to diagnose faults. The frequency content of pulses associated with a ferrite loaded transmission line kicker magnet generally extend up to a few tens of MHz: hence, it is feasible to accurately model such a kicker magnet using lumped elements. This modelling technique is powerful since it in general has a run time several orders of magnitude shorter than a full wave electromagnetic simulation. In this paper, we determine values, including those of parasitic components, using modern simulation tools, for use in the lumped equivalent circuit models. In addition, the paper describes a method to simulate coupling between beam and the electrical circuit of a kicker magnet at relatively low frequencies: this allows one to use circuit analysis tools to study means of mitigating beam induced resonances.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB346  
About • paper received ※ 16 May 2021       paper accepted ※ 02 July 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB348 Injection and Extraction Systems of the SIS100 Heavy Ion Synchrotron at FAIR kicker, injection, vacuum, septum 3514
 
  • I.J. Petzenhauser, U. Blell, S. Heberer
    GSI, Darmstadt, Germany
 
  The "Facility for Antiproton and Ion Research" (FAIR) is a new international accelerator complex, which is currently built in Darmstadt, Germany. Part of this complex is the SIS100 heavy ion synchrotron with a circumference of ~1086 m. To inject ions into the SIS100, an injection kicker system will we required. For fast extraction of the particle beam from the SIS100, an extraction kicker is used. This extraction kicker will be a bipolar system, this way it works as an emergency kicker at the same time. The fast kicker systems have to produce a current pulse >6 kA. To achieve this, energy storages are charged up to voltages >70 kV and are quickly discharged. The pulse durations vary from 0.5 us to 7 us, depending on the kicker type and the operation mode. Slow extraction of the ion beam will include an electrostatic septum, operating with voltages up to 160 kV. The requirements of these injection/extraction devices will be described in detail and the status of the projects will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB348  
About • paper received ※ 17 May 2021       paper accepted ※ 11 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB365 CERN BDF Prototype Target Operation, Removal and Autopsy Steps target, radiation, interface, operation 3559
 
  • R. Franqueira Ximenes, O. Aberle, C. Ahdida, P. Avigni, M. Battistin, L. Bianchi, L.R. Buonocore, S. Burger, J. Busom, M. Calviani, J.P. Canhoto Espadanal, M. Casolino, M. Di Castro, M.A. Fraser, S.S. Gilardoni, S. Girod, J.L. Grenard, D. Grenier, M. Guinchard, R. Jacobsson, M. Lamont, E. Lopez Sola, A. Ortega Rolo, A. Perillo-Marcone, Y. Pira, B. Riffaud, V. Vlachoudis, L. Zuccalli
    CERN, Meyrin, Switzerland
 
  The Beam Dump Facility (BDF), currently in the study phase, is a proposed general-purpose fixed target facility at CERN. Initially will host the Search for Hidden Particles (SHiP) experiment, intended to investigate the origin of dark matter and other weakly interacting particles. The BDF particle production target is located at the core of the facility and is employed to fully absorb the high intensity (400 GeV/c) Super Proton Synchrotron (SPS) beam. To validate the design of the production target, a downscaled prototype was tested with the beam at CERN in 2018 in the North Area primary area in a dedicated test at 35 kW average beam power. This contribution details the BDF prototype target operation, fully remote removal intervention, and foreseen post-irradiation examination plans.  
poster icon Poster WEPAB365 [1.691 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB365  
About • paper received ※ 18 May 2021       paper accepted ※ 15 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB368 Sigraflex® Studies for LHC CERN Beam Dump: Summary and Perspective operation, experiment, target, radiation 3571
 
  • J.M. Heredia, M. Calviani, R. Franqueira Ximenes, D. Grenier, K. Kershaw, A. Lechner, P.A. Andreu-Muñoz, F.-X. Nuiry, A. Perillo-Marcone, V. Rizzoglio, C. Torregrosa
    CERN, Geneva 23, Switzerland
  • A. Alvaro
    SINTEF, Trondheim, Norway
  • F. Berto, S. Solfiti
    NTNU, Trondheim, Norway
 
  The Large Hadron Collider (LHC) beam dump (TDE) is essential for safe and reliable operation of the collider. It absorbs particles extracted from the accelerator whenever required. The original design of the TDE dates from the mid 2000 and it is constituted of an eight-meter-long cylindrical stainless-steel tube, filled with low-Z carbon-based materials from different grades and densities. The Sigraflex®, an expanded low-density graphite, is employed in the middle section of the TDE core. Due to unexpected behaviour observed in the past LHC runs, several major upgrades were recently implemented in order for the TDE to be ready for LHC Run3 (2021-2024), where up to 555 MJ beam energy is expected to be dumped every few hours. According simulations, temperatures in the Sigraflex core will reach locally up to 1500°C in the regular dump cases, and above 2300°C for failure scenarios. The objective of this contribution is to summarize the LS2 hardware upgrades and the plan for the evaluation of the Sigraflex performance during LHC Run3. This work will also detail the last experimental and numerical findings applied to the Sigraflex®, and possible alternative materials for the future.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB368  
About • paper received ※ 18 May 2021       paper accepted ※ 11 August 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB031 Dump Line Layout and Beam Dilution Pattern Optimization of the Future Circular Collider kicker, quadrupole, target, hardware 3815
 
  • B. Facskó, D. Barna
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
  • A. Lechner, E. Renner
    CERN, Geneva, Switzerland
 
  To avoid any damage to the beam dump target in the Future Circular Collider, the beam will be swept over its surface using oscillating kickers in the x/y planes with a 90-degree phase difference, and an amplitude changing in time, creating a spiral pattern. The ideal pattern must have an increasing spiral pitch towards smaller radii to produce an even energy deposition density. We recommend the realization of the optimal pattern using two beating frequencies. This method enables a flat energy deposition density while only using simple independent damped oscillators. In this poster, we also present the study of the beamline optics and hardware that can realize the needed pattern. Two different possible hardware layouts were examined and optimized as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB031  
About • paper received ※ 19 May 2021       paper accepted ※ 28 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB157 Studying X-Ray Spectra of the SIS18 Electrostatic Septa to Measure Their Electric Field septum, injection, detector, electron 4065
 
  • B. Gålander, E. Kozlova, D. Ondreka, A. Sokolov, P.J. Spiller, J. Stadlmann
    GSI, Darmstadt, Germany
 
  The synchrotron SIS18 at GSI uses resonant extraction for slow beam extraction on the order of seconds. For some time, there has been an unexplained discrepancy of the slow extraction with a lower extraction efficiency than expected at the highest beam energies. Recent machine studies have indicated that the deflection by the electrostatic septum might be less than the nominal 2.5 mrad, leading to increased losses at the magnetic septum. In this paper, we pursue an idea to directly measure the voltage of the electrode gap by utilizing the fact that dark current electrons accelerated in the gap of the electrostatic extraction septum generate Bremsstrahlung X-rays when hitting the anode. The high-energy cut-off of the X-ray spectra then corresponds to the voltage of the electrode gap. Measurements of the X-ray spectra at the extraction septum of SIS18 have been performed using a solid-state CdTe detector. This technique provides an in-situ measurement of the voltage applied to the electrostatic extraction channel and has proven to be a useful diagnostics tool.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB157  
About • paper received ※ 19 May 2021       paper accepted ※ 02 September 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB178 The SIS100 Extraction and Emergency Kicker Magnet System vacuum, kicker, high-voltage, HOM 4115
 
  • J.H. Hottenbacher, K. Dunkel, M. Eisengruber, M. Osemann, A. Padvi, C. Piel
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
  • S. Heberer, I.J. Petzenhauser
    GSI, Darmstadt, Germany
 
  The extraction and emergency kicker system for SIS100 is a bipolar kicker system that allows for an in-situ choice between two directions: extraction to the experiments or to the beam dump. For that, both magnet ends are connected to a PFN each which are being charged simultaneously up to 80kV continuously. Due to the static HV operation, different to usually in other pulsed kicker systems, not only displacement current is flowing in the ferrite material. After less than 1s, the ferrite material is nearly field-free and the E-field is concentrated in the surrounding ceramic magnet clamp mechanism. As the field is further concentrated in gaps between ceramic and metallic parts, the HV layout of the magnet is a critical design task. As a magnetic field homogeneity of ±1% is required, special shaping of the coil is required as found during iterative 3D field simulations. The kicker chamber is designed to operate at a pressure level of 3·10-11 mBar. As one 3 meter-chamber contains 3.5 m² ferrite surface, careful vacuum heat treatment of the ferrite is required to reach this pressure level. The paper will describe design principles for HV and UHV and effects found by 3D modeling.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB178  
About • paper received ※ 18 May 2021       paper accepted ※ 28 July 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB199 Studies of Longitudinal Beam Losses at LHC Injection injection, simulation, impedance, beam-losses 4164
 
  • L.E. Medina Medrano, T. Argyropoulos, R. Calaga, H. Timko
    CERN, Geneva, Switzerland
 
  Funding: Research supported by the HL-LHC project.
Due to higher beam intensities, the required rf power in the High-Luminosity LHC (HL-LHC) era is expected to be at the limit of the available rf power. To mitigate potential limitations of the rf system, the injection voltage can be reduced at the expense of beam losses. In this paper, the average and bunch-by-bunch losses are estimated from Run 2 beam intensity measurements in the SPS before extraction and in the LHC after injection. Macro-particle simulations are performed with CERN’s Beam Longitudinal Dynamics code to reproduce the observed SPS-to-LHC capture and LHC flat-bottom losses. First estimates of injection losses for the HL-LHC at different injection voltages and injection energy errors are discussed.
 
poster icon Poster THPAB199 [2.428 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB199  
About • paper received ※ 18 May 2021       paper accepted ※ 28 July 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB243 Optimizing Mu2e Spill Regulation System Algorithms controls, simulation, network, resonance 4281
 
  • A. Narayanan
    Northern Illinois University, DeKalb, Illinois, USA
  • K.J. Hazelwood, M.A. Ibrahim, V.P. Nagaslaev, D.J. Nicklaus, P.S. Prieto, B.A. Schupbach, K. Seiya, R.M. Thurman-Keup, N.V. Tran
    Fermilab, Batavia, Illinois, USA
  • H. Liu, S. Memik, R. Shi, M. Thieme
    Northwestern University, Evanston, Illinois, USA
 
  Funding: The work has been performed at Fermilab. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.
A slow extraction system is being developed for the Fermilab’s Delivery Ring to deliver protons to the Mu2e experiment. During the extraction, the beam on target experiences small intensity variations owing to many factors. Various adaptive learning algorithms will be employed for beam regulation to achieve the required spill quality. We discuss here preliminary results of the slow and fast regulation algorithms validation through the computer simulations before their implementation in the FPGA. Particle tracking with sextupole resonance was used to determine the fine shape of the spill profile. Fast semi-analytical simulation schemes and Machine Learning models were used to optimize the fast regulation loop.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB243  
About • paper received ※ 20 May 2021       paper accepted ※ 28 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB260 Detection and Classification of Collective Beam Behaviour in the LHC operation, controls, injection, network 4318
 
  • L. Coyle, F. Blanc, T. Pieloni, M. Schenk
    EPFL, Lausanne, Switzerland
  • X. Buffat, M. Solfaroli Camillocci, J. Wenninger
    CERN, Meyrin, Switzerland
  • E. Krymova, G. Obozinski
    SDSC, Lausanne, Switzerland
 
  Collective instabilities can lead to a severe deterioration of beam quality, in terms of reduced beam intensity and increased beam emittance, and consequently a reduction of the collider’s luminosity. It is therefore crucial for the operation of the CERN’s Large Hadron Collider to understand the conditions in which they appear in order to find appropriate mitigation measures. Using bunch-by-bunch and turn-by-turn beam amplitude data, courtesy of the transverse damper’s observation box (ObsBox), a novel machine learning based approach is developed to both detect and classify these instabilities. By training an autoencoder neural network on the ObsBox amplitude data and using the model’s reconstruction error, instabilities and other phenomena are separated from nominal beam behaviour. Additionally, the latent space encoding of this autoencoder offers a unique image like representation of the beam amplitude signal. Leveraging this latent space representation allows us to cluster the various types of anomalous signals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB260  
About • paper received ※ 19 May 2021       paper accepted ※ 19 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB282 Optimization Design of Four-Point Vibration Isolation Support for Spallation Neutron Source Vibration Magnet ISOL, dipole, experiment, damping 4352
 
  • J.S. Zhang, J.X. Chen, H.Y. He, L. Liu, R.H. Liu, C.J. Ning, G.Y. Wang, A.X. Wang, J.B. Yu, Y.J. Yu, D.H. Zhu
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • L. Kang
    IHEP, Beijing, People’s Republic of China
 
  Chinese spallation neutron source (CSNS) RCS of the dipole magnets by 25 Hz sinusoidal alternating current (AC) with dc bias field, because the magnet will produce eddy current effect caused by the vibration, this safe and reliable operation of the long-term impact of magnets, so need to CSNS/RCS dipole magnets, a support system for dynamic characteristic research and the performance of vibration isolation design. The mechanical model of ac dipole magnet and support system is first established, and ANSYS theoretical modal analysis and experimental modal verification are carried out. On this basis, vibration isolation parameters of the four-point support system are studied. The theoretical analysis and the experimental results of modal parameters are consistent, which shows that the ANSYS analysis model is correct and reliable. The dynamic system parameter design method established in this paper can be applied to various equipment of AC power accelerator. The final experimental verification shows that the total displacement amplitude of the isolator to the Y direction of the magnet on the magnetic support decreases by 62.3%.  
poster icon Poster THPAB282 [0.426 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB282  
About • paper received ※ 16 May 2021       paper accepted ※ 02 September 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB318 Uniformization of the Transverse Beam Profile with Nonlinear Magnet target, HOM, synchrotron, radiation 4413
 
  • Y. Li, X. Guan, X.Y. Liu, X.W. Wang, Q.Z. Xing, Y. Yang, H.J. Yao, W.B. Ye, S.X. Zheng
    TUB, Beijing, People’s Republic of China
  • Y. Yang
    NINT, Shannxi, People’s Republic of China
 
  The beam generated after slow extraction of the synchrotron is always not uniform and asymmetrical in transverse distribution. In practice, radiation therapy or radiation irradiation requires a high degree of uniformity of beam spot. Therefore, it is necessary to adjust the beam distribution with a nonlinear magnet and other elements on the transport line from synchrotron ring to beam target station. Nonlinear magnet has high requirements on beam quality. Before passing through the nonlinear magnet field, the beam center can be adjusted by taking advantage of the gradient change distribution of the nonlinear magnet’s transverse field map to achieve uniform distribution at the target station. As an example, we use the parameters of heavy ions of XiPAF (Xi’an 200MeV Proton Application Facility) to simulate the beam transport from synchrotron ring to beam target station.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB318  
About • paper received ※ 20 May 2021       paper accepted ※ 08 July 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)