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Abstract
Collective instabilities can lead to a severe deterioration

of beam quality, in terms of reduced beam intensity and
increased beam emittance, and consequently a reduction
of the collider’s luminosity. It is therefore crucial for the
operation of the CERN’s Large Hadron Collider (LHC) to
understand the conditions in which they appear in order
to find appropriate mitigation measures. Using bunch-by-
bunch and turn-by-turn beam amplitude data, courtesy of
the transverse damper’s observation box (ObsBox), a novel
machine learning based approach is developed to both detect
and classify these instabilities. By training an autoencoder
neural network on the ObsBox amplitude data and using
the model’s reconstruction error, instabilities and other phe-
nomena are separated from nominal beam behaviour. Addi-
tionally, the latent space encoding of this autoencoder offers
a unique image like representation of the beam amplitude
signal. Leveraging this latent space representation allows us
to cluster the various types of anomalous signals.

INTRODUCTION
When operating the LHC, understanding and mitigating

instabilities is essential for efficient and safe operation of
the machine. As such, the turn-by-turn and bunch-by-bunch
transverse beam position data, essential for the LHC’s feed-
back system, is made available through the transverse feed-
back system Observation Box (ObsBox) [1].

The ObsBox maintains rolling buffers of the transverse
bunch position signals and saves the buffers to disk when
receiving manual or automatic triggers. An automatic trig-
gering system was developed to automatically detect instabil-
ities and save the corresponding buffer [2]. This instability
detection system, being very sensitive, produces a very large
amount of false positives. In practice, the vast majority of
saved data does not contain any instabilities. The analysis of
this instability data is hindered by the large amount of false
triggers, and any analysis is done on a per case level.

This paper describes a novel method of detecting instabili-
ties in the transverse beam position data stream and provides
a framework with which to automatically cluster similar
anomalous behaviour.

METHODS
The method described in this paper makes use of the large

amount of accumulated false triggers to train an anomaly
∗ loic.coyle@epfl.ch, loic.thomas.coyle@cern.ch

detection model. This model, once trained, can be applied
on the transverse beam position data stream to filter out
anomalous from nominal beam behaviour. As such, the
anomaly detection model is designed with online operation
in mind.

The clustering of these anomalous signals is then per-
formed by a clustering model. The clustering relies on ex-
tracting features from the input time series, these features
vectors are then used to cluster the anomalies.

A schematic diagram of the models is shown in Fig. 1.

Figure 1: Model overview.

Autoencoders
Both the anomaly detection and feature extraction models

use Convolutional Autoencoders (CAE).
Autoencoder [3] models are trained to reconstruct the

input data despite having to pass through a bottleneck. By
doing this they learn to compress and decompress the input
to and from a latent space representation. If the latent space
is successfully learnt, the bad quality of the reconstruction
is a sign of an anomalous input sample. The larger the
reconstruction error the more anomalous a given data sample
is.

In this case, as the data are time series, successive 1D Con-
volutional layers are used in the AE to learn filters which
convolve over the time dimension of the input. These convo-
lutional filters detect and encode recurring patterns in the
time series. In this case, the CAE used are tuned to obtain a
4 × 4 latent space which empirically was found to provide
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a sufficiently low dimensional space for the clustering al-
gorithm while still allowing for good signal reconstruction
through the anomaly detection CAE.

The anomaly detection CAE and feature extraction CAE,
while being identical in structure, serve two distinct pur-
poses. The anomaly detection CAE uses the reconstruction
error to detect anomalous samples, whereas the feature ex-
traction CAE is trained from anomalous data so that its latent
space encoding provides unsupervised feature extraction for
the clustering algorithm. The latent space encoding of the
anomaly detection CAE is not used for feature extraction as
we are interested in clustering the anomalous signals only,
which, by definition, are badly reconstructed, thereby indi-
cating that their latent space encodings are not representative
of the input time series.

Clustering
Once the feature are extracted, any vector based cluster-

ing algorithm can be used. In this paper K-Means [4] is
showcased. In order to determine the optimal number of
clusters for the K-Means algorithm, the elbow criteria [5] is
employed.

DATA PREPROCESSING
The data used to train the model, is the ObsBox’s instabil-

ity buffer which is 65536 turns long. Specifically the beam
1 horizontal plane data is used. This data covers all beam
modes and operation schemes.

In order to facilitate the training of the model, some pre-
processing is applied to the data. However, it is important to
keep in mind that this preprocessing should be minimal so
as to facilitate online integration. Namely, the rolling mean
and standard deviation are computed from the raw transverse
beam position buffer. The 65536 turn buffer is then split
into smaller 2048-turn chunks. Each chunk is individually
normalized between 0 and 1.

TRAINING
Anomaly Detection

The CAE anomaly detection model is trained for
50 epochs on a random subset of the entire data. A vali-
dation dataset is used to monitor overfitting. As this is an
unsupervised problem, no labelled test data set is available.
Overall, the training dataset contains roughly 4 million 2048-
turn samples.

As shown in Fig. 2 the training has converged and, given
that loss functions values are very close for both training
and validation datasets, there is no obvious overfitting.

Once trained, we are able to select the anomalous sig-
nals by selecting data with a high reconstruction error when
passed through the CAE model. It is clear that the anomalies
contain more than just collective instabilities, they contain
anomalous behaviour such as injection oscillations, beam
dumps, logging errors, etc. By tuning the reconstruction
error threshold we are able to control the sensitivity of the
anomaly detection model.

Figure 2: Training loss.

Notice that two similar transverse beam position signals,
despite being very similar have drastically different latent
space encodings as the anomaly detection CAE’s encoding
is accurate for the nominal signals and not the anomalous
signals, as shown in Fig. 3.

Figure 3: Two similar anomalous time series, from fill 6364,
and their latent space encodings. (Left) raw transverse beam
position time series. For each time series, the encoding of
the anomaly detection CAE (top 4 × 4 patch) and of the
feature extraction CAE (bottom 4 × 4 patch) are represented.

To illustrate the clustering, the 64 most anomalous signals
are kept for clustering.

Clustering of Anomalies
The second feature extraction CAE is trained on the

anomalous signals. This provides an accurate latent space
encoding of these anomalous signals. This feature extraction
CAE is identical to the anomaly detection CAE, with the
only difference being the training dataset.

The latent space encoding of this second CAE is more
consistent, as shown in the bottom encoding images of Fig. 3,
similar time series have similar latent space encodings.

Once the latent space encodings of the anomalous sig-
nals are obtained, K-Means [4] is applied. Using the elbow
method [5] with the distortion criteria, as shown in Fig. 4,
the optimal number of clusters is determined to be 6.
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Figure 4: Distortion score elbow for K-Means clustering.

RESULTS
Using K-Means on the extracted features, we obtain 6

clusters; a subset of each cluster is shown in Fig. 5. The
complete cluster assignments can be found online at [6].

Figure 5: The raw transverse beam position data of a few
of the anomalous samples in each cluster, along with their
respective latent space representation.

We observe that cluster 6 contains the start of injection os-
cillations. Cluster 4 mainly contains the end of the injection
oscillations. Cluster 5 contains lower frequency orbit oscilla-
tions potentially caused by longitudinal oscillations. Cluster
1, 2 and 3 contain interesting growths and drops in oscil-
lation amplitudes some of which are instability candidates.
Since there is no ground truth available for the clustering
problem, no quantitative performance metric is available to
evaluate the quality of the clustering. However, applying the
same the clustering model on a subset of the 64 anomalous
samples results in the same cluster assignments, indicating
good cluster stability.

Additionally, for comparison, we applied an alternative
clustering method on the same anomalous signals. This
time no feature extraction step is required, instead, Dynamic
Time Warping (DTW) [7] is used to compute the similarity
between time series and Hierarchical Clustering (HC) [8]
to assign the clusters, see [9] for the complete cluster as-
signments. The cluster cut off threshold is tuned to obtain 6
clusters so as to be comparable with the CAE & K-Means
approach.

Visual inspection shows that both methods produce coher-
ent clusters with only a few samples assigned to questionable

clusters. The CAE & K-Means approach has the advantage
of being much more scalable due to its cheaper computa-
tional requirements, especially once trained. Whereas, HC
requires the computation of all pairwise similarities which
scales as O(𝑛2) and DTW itself is typically also O(𝑛2), this
quickly becomes unwieldy. Moreover, the first method can
easily be applied on new data samples as it is an inductive
model, i.e. it can be trained on a dataset and assign clusters
on new previously unseen data samples, which is a very
appealing feature and is not the case for the DTW & HC
method.

Moreover, the latent space encoding used in the CAE & K-
means approach could very well prove to be useful for multi-
bunch instability clustering. Using this latent space encoding
a beam becomes a stack of images on which convolution
models could be applied to cluster multi-bunch behaviour.

CONCLUSION
A novel, data driven, instability triggering methodology

has been developed based on a CAE model. This model can
successfully detect anomalous behaviour in the transverse
bunch position signal. The anomalous samples can then
be assigned to clusters by using a feature extraction CAE
combined with any standard clustering algorithm, in this
paper K-Means was showcased.

The quality of the resulting clustering of the anomalous
signals’ latent representation is comparable to HC with DTW
applied directly to the anomalous time series. At the same
time the proposed approach is inductive and more scalable.

However some aspects still could be improved upon:

• The anomaly detection model has, as of yet only been
trained on a subset of the entire dataset.

• The tuning of the hyper parameters of the various mod-
els is challenging in the absence of ground truth.

• Extending the clustering to take into account multi-
bunch behaviour.
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