Hung-Chun Chao, DESY, Hamburg, Germany

Introduction

The PETRA IV project toward a diffraction limit synchrotron light source at 6 GeV features an ultra low emittance storage ring. It has a very small dynamic aperture (DA) so the beam to be injected must have very low emittance.

The current booster DESY II having FODO lattice does a good job preparing the beam to be injected and accumulated in PETRA III. It has been in service for more than 50 years and is still reliable. However, its emittance (350 nm-rad) is too large for PETRA IV so a new synchrotron is always needed as a booster or an accumulator.

This new ring has to be in the existing old tunnel which can accommodate rings of sizes between 292 to 316 m. The key goal of the injector upgrade project is to achieve the equilibrium emittance <30 nm-rad at 6 GeV [1].

TME CELL

- Periodicity: 32
- Curvature: 292.8 m
- Working Tune: 23.20 / 8.30
- Chromaticity: -39.4 / -34.6
- Momt. Compaction: 1.3 E-3
- Energy: 6 GeV
- Energy Loss per Turn: 7.5 MeV
- Natural Emittance: 5.8 nm-rad
- Energy Spread: 1.3 E-3
- Damping Time: 1.6 / 1.6 / 0.8 ms

- Vertical phase advance π across two sections
- 16 slots for efficient 2-kicker bump
- Kicker leverage is 20 mm/mrad
- Vertical bump with horizontal injection/extraction with Lambertson septum
- Some magnets have to be properly designed so that the injection/extraction trajectory can go through them without begin blocked

TME RING

- At bending center, $\beta^* = \frac{\sqrt{23}}{24}$ for a TME lattice
- $L \theta$

Tune Scan -- Strengths

- Contour of β^*

Tune Scan -- Optics

- Contour of horizontal emittance at central plane

Iso Emittance Contour

- $F=1.15$ in this case

Tune Scan -- Detuning Factor

- First order tune detuning factors $a_{\phi 1}$, $a_{\phi 2}$, $a_{\phi 3}$, and $a_{\phi 4}$, etc. are defined as

$\delta \phi \equiv a_{\phi 1} \phi + a_{\phi 2} \phi^2 + a_{\phi 3} \phi^3 + a_{\phi 4} \phi^4$

- Tune at a sweet spot of big vertical DA

Synchro-Betatron Coupling

- Emittance growth due to synchro-betatron coupling is negligible

Summary

- The goal of designing a low emittance synchrotron with TME lattice is achieved.
- With 32 superperiods, its equilibrium emittance is about 10 nm-rad at 6 GeV, just 15% more than the TME condition.
- It can be an option of the booster or accumulator for the PETRA IV project.
- Moreover, its energy can go up to 7.5 GeV and many other versatile usages are possible.