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Abstract
In circular accelerators, crossing the coupling resonance

induces the exchange of the transverse emittances, provided
the process is adiabatic. In this paper, we introduce a theo-
retical framework to analyse the resonance-crossing process,
based on Hamiltonian mechanics, which is capable of ex-
plaining all the features of the emittance exchange process.

INTRODUCTION
The impact of linear coupling on transverse betatron mo-

tion has been extensively studied as it has an impact already
on the linear dynamics. In 2001, the phenomenon of emit-
tance exchange due to dynamic crossing of the coupling
resonance was studied [1], with further results reported in
2007 [2], in which it is mentioned that a full emittance ex-
change happens if the resonance crossing is adiabatic, and
an adiabatic condition is given. This research has opened a
new domain of investigations and a recent paper addressed
the same topic with the goal to develop a complete theory
of the emittance exchange process [3].

In recent years, there has been intense theoretical efforts
to study in detail the phenomenon of resonance crossing
in one degree-of-freedom (1DoF) Hamiltonian systems in
view of devising novel beam manipulations [4–9]. This
culminated in the proposal and final implementation of the
CERN PS Multi-Turn Extraction (MTE) as an operational
means to provide an optimized extraction technique based on
nonlinear beam dynamics [10–16]. It is worth stressing that
the mathematical framework for these studies is the theory
of adiabatic invariance for Hamiltonian systems.

This framework provides also the natural way of address-
ing the analysis of the resonance crossing in the presence
of linear coupling. In this paper, we show how all obser-
vations reported in previous works, in particular in [2, 3],
find a clear explanation using the results of adiabatic theory.
The analysis is also extended to the case in which nonlinear
detuning with amplitude is present.

THE HAMILTONIAN MODEL AND ITS
DYNAMICS

Following the treatment used in Refs. [17–19], we con-
sider the Hamiltonian

𝐻(𝑝𝑥, 𝑝𝑦, 𝑥, 𝑦) =
𝑝2

𝑥 + 𝑝2
𝑦

2 + 1
2 (𝜔2

𝑥 𝑥2 + 𝜔2
𝑦 𝑦2 + 2𝑞 𝑥 𝑦) ,

(1)
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where 𝑞 = −√𝛽𝑥𝛽𝑦 ̂𝑞, and the coefficient ̂𝑞 is defined as

̂𝑞 = 1
2𝐵𝜌 (

𝜕𝐵𝑦
𝜕𝑦 + 𝜕𝐵𝑥

𝜕𝑥 ) , (2)

and represents the strength of a skew quadrupole on the
betatron dynamics. In the following, the notation 𝑧 will be
used to denote either the coordinate 𝑥 or 𝑦.

We consider the adiabatic crossing of the linear coupling
resonance, namely 𝜔𝑥 − 𝜔𝑦 = 0, when the frequencies are
slowly modulated, and we define

𝛿(𝜆) = 𝜔𝑥(𝜆) − 𝜔𝑦(𝜆) 𝛿2(𝜆) = 𝜔2
𝑥(𝜆) − 𝜔2

𝑦(𝜆),
(3)

with 𝜆 = 𝜖𝑡, 𝜖 ≪ 1, and 𝜖 is the adiabatic parameter that
describes the resonance crossing process. Without loss of
generality, 𝛿(𝜆) is defined by a linear function that varies
from positive to negative values (or vice versa) crossing
zero.

The eigenvalues of the potential matrix are given by

𝜔2
1,2 =

𝜔2
𝑥 + 𝜔2

𝑦 ± √𝛿2
2(𝜆) + 4𝑞2

2 , (4)

and the corresponding eigenvectors are

𝑣1(𝜆) = 𝑐1
⎛⎜⎜⎜
⎝

𝛿2(𝜆) + √𝛿2
2(𝜆) + 4𝑞2

2 , 𝑞⎞⎟⎟⎟
⎠

, (5)

where 𝑐1 is a normalising constant and 𝑣2(𝜆) ⟂ 𝑣1(𝜆).
For 𝑞 ≪ 1 and 𝛿2(𝜆) > 0, one has 𝑣1 → 𝑒𝑥 and 𝑣2 → 𝑒𝑦,

where 𝑒𝑥, 𝑒𝑦 are the unit vectors defining the horizontal and
vertical planes. When 𝛿2(𝜆) = 0, i.e. 𝜔𝑥(𝜆) = 𝜔𝑦(𝜆),
then 𝑣1 and 𝑣2 define the two bisectors of the two angles
defined by the horizontal axis and the positive vertical axis,
whereas when |𝑞| ≪ 1 and 𝛿2(𝜆) < 0, then 𝑣1 → 𝑒𝑦 and
𝑣2 → −𝑒𝑥. Therefore, the passage through the resonance
𝜔𝑥 − 𝜔𝑦 implies an exchange of the direction of the eigen-
vectors.

Note that the difference resonance cannot be crossed
by 𝜔1,2 as the eigenvalues cannot get closer than
(𝜔2

1 −𝜔2
2)min = 2|𝑞| as it is well-known (see, e.g. Refs. [2, 3]

and references therein). Hence, in the physical co-ordinates,
the coupling resonance can be crossed, but the tunes are not
the eigenvalues of the system. On the other hand, in the co-
ordinate system of the eigenvalues the resonance cannot be
crossed, although the eigenvalues are the proper quantities
to describe the dynamics.

After a sequence of transformations, the introduction of
a slow phase 𝜙a = 𝜃𝑥 − 𝜃𝑦, and the application of a per-
turbative approach, averaging over the fast-evolving angle
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𝜙b = 𝜃𝑦, it is possible to study the resonance-crossing pro-
cess for the original Hamiltonian (1). We consider 𝐻 of the
following form

𝐻(𝜙, 𝐽, 𝜆) = 𝛿(𝜆)𝐽 + 𝑞√(1 − 𝐽)𝐽 sin 𝜙 , (6)

where, without loss of generality, we have re-scaled the
action according to 𝐽 = 𝐽a/𝐽b so that 𝐽 = 0 and 𝐽 = 1
are singular lines for the Hamiltonian (6). We also defined
𝜙 = 𝜙a + 𝜋/2, and then replaced 𝛿(𝜆) →
𝛿(𝜆) √𝜔𝑥(𝜆)𝜔𝑦(𝜆)/𝐽b, which corresponds to a global re-
scaling of the Hamiltonian.

Note that the Hamiltonian (6) has the form

𝐻(𝜙, 𝐽, 𝜆) = 𝜖𝑡𝐽 + 𝑞 𝐻1(𝐽, 𝜙) , (7)

for which the equations of motion are

d𝐽
d𝑡 = −𝑞𝜕𝐻1

𝜕𝜙
d𝜙
d𝑡 = 𝜖𝑡 + 𝑞𝜕𝐻1

𝜕𝐽 . (8)

By introducing a new time ̄𝑡 = 𝑞 𝑡, Eq. (8) can be rewritten
in the following form

d𝐽
d ̄𝑡 = −𝜕𝐻1

𝜕𝜙
d𝜙
d ̄𝑡 = − 𝜖

𝑞2
̄𝑡 + 𝜕𝐻1

𝜕𝐽 . (9)

Thus, the small parameter characterising the adiabaticity is
̄𝜖 = 𝜖/𝑞2, and the new slow time is �̄� = (𝜖/𝑞2) ̄𝑡. Note also

that this approach can be extended to the case in which 𝛿(𝜆)
is a nonlinear function of 𝜆. If we choose a polynomial
expression, e.g. 𝛿(𝜆) ∝ (𝜆 − 𝜆c)

2𝑛+1, where 𝜆c repre-
sents the time of the resonance crossing, it is easy to show
that the small parameter characterising the adiabaticity is

̄𝜖 = 𝜖/𝑞
2𝑛+2
2𝑛+1 , and the exponent tends to 1 when 𝑛 → ∞. The

level curve that reaches 𝐽 = 1 at 𝜙 = 0 and 𝜙 = 𝜋 is a
critical one and is tangent to the 𝐽 = 1 curve, but it is not a
singularity of the dynamics.

In Fig. 1, the phase-space portraits of the Hamiltonian
of Eq. (6) (assumed to be frozen, i.e. with 𝜆 constant) are
shown, for 𝑞 = 1 and three values of 𝛿, namely 1, 0, −1 for
the left, centre, and right plot, respectively.

The red curves represent the critical curve, which is also
called coupling arc in Refs. [18, 19]. In the left plot (𝛿 = 1),
two separated islands are visible, whose areas increase as
𝛿 decreases to zero. Furthermore, there exists a region of
separatrix curves around the islands, tangent to the singular
lines 𝐽 = 0 and 𝐽 = 1. When 𝛿 = 0 (centre plot), the islands
have maximal area, with a pseudo-separatrix that connects
the singular line through the vertical line 𝜙 = 𝜋. Finally, a
symmetric situation when 𝛿 < 0 is visible in the right plot.

It should be noted that this phase space is topologically a
sphere, the two singular lines being identified with the north
and the south pole.

The prototype Hamiltonian to study the emittance ex-
change process can be written in the normal-mode space

𝐻(𝜙, 𝐽, 𝜆) = 𝛾(𝜆)𝐽 + 𝜖√(1 − 𝐽)𝐽 sin 𝜙 , (10)

where we assume 𝐽2 = 1, so that 𝐽 = 0 and 𝐽 = 1 are
singular lines for the Hamiltonian, and 𝛾(𝜆) = 𝑂(𝑞2) for
𝛿(𝜆) → 0. The action-angle variables are analytic for
𝛾(𝜆) → 0 and the Hamiltonian is analytic on the sphere. It
is then possible to apply the Theorem reported in Ref. [20]
to the Hamiltonian 𝐻(𝜙, 𝐽, 𝜆) to state that the change of the
action for a given orbit of the system is exponentially small,
i.e. Δ𝐽 = 𝑂(exp(−𝑐/𝜖)) with 𝑐 a positive constant, when
𝜆 varies, which corresponds to the crossing of the original
difference resonance.

The same remarks made for the Hamiltonian of Eq. (6)
about the re-scaled adiabaticity parameter hold also for (10).
Hence, Δ𝐽 = 𝑂(exp(−𝑐 𝑞2/𝜖)) in case of a resonance cross-
ing linear in 𝜆, or Δ𝐽 = 𝑂(exp(−𝑐𝑞

2𝑛+2
2𝑛+1 /𝜖)) in case of a

nonlinear crossing of the resonance. Note that a nonlin-
ear resonance crossing is more advantageous in terms of
adiabaticity of the process with respect to a linear one.

Detuning with Amplitude
In presence of detuning with amplitude generated by non-

linearities, the dynamics is governed by the Hamiltonian of
Eq. (1) plus the term [17]

𝐻det(𝑝𝑥, 𝑝𝑦, 𝑥, 𝑦) = 𝛼𝑥𝑥(𝑥2 + 𝑝2
𝑥

2 )
2

+

+ 2𝛼𝑥𝑦(𝑥2 + 𝑝2
𝑥

2 )⎛⎜
⎝

𝑦2 + 𝑝2
𝑦

2
⎞⎟
⎠

+ 𝛼𝑦𝑦
⎛⎜
⎝

𝑦2 + 𝑝2
𝑦

2
⎞⎟
⎠

2

.

(11)

The r.h.s. of Eq. (11) may generate hyperbolic fixed points
in phase space [21], which imply the existence of a separatrix
that introduces a singularity in the phase-space structure and
hence alters the character of the dynamics. In particular,
the nice property about the exponentially-small change of 𝐽,
linked to the analyticity of the dynamics of (10), is lost.

SIMULATION RESULTS
Numerical simulations have been performed using map

models (representing a system made of a FODO cell and a
skew quadrupole, possibly with an octupolar term [21]).

The dependence of the emittance-exchange phenomenon
on the adiabaticity of the resonance-crossing process was
evaluated. In the simulations, 𝜔𝑦 has been varied while
keeping 𝜔𝑥 constant. Thus, 𝛿(𝜆) = 𝜔𝑥 − 𝜔𝑦(𝜆) is varied
from a negative to a positive value passing through zero. As
a figure of merit for the exchange, we used the function 𝑃na,
introduced in [3], which is defined as

𝑃na = 1 −
⟨𝐼𝑥,f⟩ − ⟨𝐼𝑥,i⟩
⟨𝐼𝑦,i⟩ − ⟨𝐼𝑥,i⟩

, (12)

where 𝐼𝑧,i and 𝐼𝑧,f are the initial and final linear action vari-
ables, respectively. 𝑃na is zero when a perfect exchange is
attained and one when no exchange occurs.

The evolution of a set of initial conditions, rep-
resenting a beam exponentially distributed in 𝐼𝑥, i.e.
𝜌(𝐼𝑥) = (𝑁0/ ⟨𝐼𝑥⟩) exp(−𝐼𝑥/ ⟨𝐼𝑥⟩), has been computed,
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Figure 1: Phase-space portraits of the Hamiltonian of Eq. (6) for 𝑞 = 1 and 𝛿 = −1 (left), 𝛿 = 0 (centre), and 𝛿 = 1 (right)
in action-angle co-ordinates (𝜙, 𝐽). The red line represents the critical curve (the so-called coupling arc).

while varying 𝜔𝑦 in the fixed interval 𝜔𝑦,i = 2.5 and
𝜔𝑦,f = 2.7 over a given time interval 𝑁. We expect that
⟨𝐼𝑥⟩ becomes ⟨𝐼𝑦⟩ after the resonance crossing. What we
observe in Fig. 2 is a clear exponential dependence of 𝑃na
as a function of 1/𝜖, in evident agreement with the findings
of Ref. [3] and with the qualitative discussion carried out
previously.

0
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0 0.1 0.2 0.3 0.4 0.5

P
n
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1/ε (×107)

q = −0.002
q = −0.003
q = −0.005

exp. fit
exp. fit
exp. fit

Figure 2: Evolution of 𝑃na vs 1/𝜖 for an exponential distri-
bution of initial conditions, and different values of 𝑞. Expo-
nential fits are also presented. The linear map has been used,
with parameters 𝜔𝑥 = 2.602, 𝜔𝑦,i = 2.5, 𝜔𝑦,f = 2.7, and a
set of initial conditions with ⟨𝐼𝑥,i⟩ = 10−4, ⟨𝐼𝑦,i⟩ = 4 × 10−4.

The exponential behaviour of 𝑃na features a clear depen-
dence on 𝑞. However, an oscillatory behaviour is also ob-
served due to the neglected terms 𝑂(𝑞2) (see [21] for more
detail). These scaling laws are not connected with the fea-
tures of the distribution of initial conditions, but rather to
the individual orbits of the Hamiltonian system.

We studied also the impact of detuning with amplitude
on the adiabaticity of the emittance exchange using a map
model with a normal octupole with normalised strength
𝑘3 = 𝐾3𝛽2

𝑥/6, setting 𝜒 = 1, and simulating the resonance-
crossing process in the same way as in absence of detuning.

For Gaussian distributions of initial conditions corre-
sponding to different emittances in 𝑥 and 𝑦, 𝑃na has been
evaluated for different values of 𝑘3. The essential difference
between the linear and nonlinear cases is clearly visible when
investigating the dependence of 𝑃na on the adiabatic param-

0
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0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

P
n
a

1/ε (×104)

k3 = 10
k3 = 10, power fit

k3 = −10
k3 = −10, power fit

Figure 3: Dependence of 𝑃na on 𝜖 for 𝑘3 = 10 and 𝑘3 =
−10. A power-law dependence 𝑃na = 𝑎𝜖𝑏 + 𝑐, is fitted and
the results also shown (𝑏 = −0.381(9) for 𝑘3 = 10 and
𝑏 = −0.844(9) for 𝑘3 = −10).

eter 𝜖. This is shown in Fig. 3: the exponential function is
lost and is replaced by a power-law for 𝑃na.

In presence of nonlinear detuning with amplitude, it is
possible to devise a scaling law linking 𝑞 and 𝜖. It is straight-
forward to conclude that 𝑃na is linked to the change of the
invariants during the crossing process. Therefore, the scal-
ing law 𝑃na = 𝑎𝜖𝑏(𝑘3,𝑞) + 𝑐(𝑘3, 𝑞), which has been analysed
in Fig. 3, gives rise to the following relationship

ln 𝜖 = const. + 𝑐(𝑘3, 𝑞)
𝑎 𝑏(𝑘3, 𝑞) , (13)

which should be fulfilled to keep constant the change of the
invariant. The essential difference with respect to what has
been found in the absence of nonlinear detuning is apparent.

CONCLUSIONS
The Hamiltonian theory of the dynamic crossing of the

coupling resonance has been presented and discussed, con-
sidering not only the linear, but also the nonlinear case. Key
relationships between the system parameters and the adia-
baticity condition of the resonance-crossing process have
been derived. The observed phenomenology has been suc-
cessfully explained.
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