Keyword: dipole
Paper Title Other Keywords Page
MOOCS2 Numerical Verification of the Power Transfer and Wakefield Coupling in the CLIC Two-beam Accelerator wakefield, simulation, coupling, damping 51
 
  • A.E. Candel, K. Ko, Z. Li, C.-K. Ng, V. Rawat, G.L. Schussman
    SLAC, Menlo Park, California, USA
  • A. Grudiev, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
 
  The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator concept envisions large complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.  
slides icon Slides MOOCS2 [286.042 MB]  
 
MOODN6 Muon Collider Interaction Region and Machine-detector Interface Design quadrupole, collider, background, neutron 82
 
  • N.V. Mokhov, Y. Alexahin, V. Kashikhin, S.I. Striganov, A.V. Zlobin
    Fermilab, Batavia, USA
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
One of the key systems of a Muon Collider (MC)- seen as the most exciting options for the energy frontier machine in the post-LHC era - is its interaction region (IR). Designs of its optics, magnets and machine-detector interface are strongly interlaced and iterative. As a result of recent comprehensive studies, consistent solutions for the 1.5 TeV c.o.m. MC IR have been found and are described here. To provide the required momentum acceptance, dynamic aperture and chromaticity, innovative approach was used for the IR optics. Conceptual designs of large-aperture high-field dipole and high-gradient quadrupole magnets based on Nb3Sn superconductor were developed and analyzed in terms of the operation margin, field quality, mechanics, coil cooling and quench protection. Shadow masks in the interconnect regions and liners inside the magnets are used to mitigate unprecedented dynamic heat deposition due to muon decays (~1 kW/m). It is shown that an appropriately designed machine-detector interface with sophisticated shielding in the detector has a potential to substantially suppress the background rates in the MC detector.
 
slides icon Slides MOODN6 [1.233 MB]  
 
MOODS2 Nonlinear Resonance Measurements and Correction in Storage Rings resonance, betatron, sextupole, storage-ring 88
 
  • R. Bartolini
    Diamond, Oxfordshire, United Kingdom
 
  Several theoretical and experimental techniques have been developed in recent years to correct the detrimental effect of nonlinear resonances on dynamic aperture, beam lifetime, injection efficiency and beam loss distribution. These issues are equally important in synchrotron light sources and high energy colliders. We present the latest theoretical and experimental results obtained at the Diamond light source on the characterization of the nonlinear resonances and on the comparison between the nonlinear model of the machine to the real accelerator.  
slides icon Slides MOODS2 [3.159 MB]  
 
MOP050 EPIC Muon Cooling Simulations using COSY INFINITY ion, resonance, quadrupole, emittance 190
 
  • J.A. Maloney, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois, USA
  • A. Afanasev, R.P. Johnson
    Muons, Inc, Batavia, USA
  • S.A. Bogacz, Y.S. Derbenev
    JLAB, Newport News, Virginia, USA
  • V.S. Morozov
    ODU, Norfolk, Virginia, USA
 
  Next generation magnet systems needed for cooling channels in both neutrino factories and muon colliders will be innovative and complicated. Designing, simulating and optimizing these systems is a challenge. Using COSY INFINITY, a differential algebra-based code, to simulate complicated elements can allow the computation and correction of a variety of higher order effects, such as spherical and chromatic aberrations, that are difficult to address with other simulation tools. As an example, a helical dipole magnet has been implemented and simulated, and the performance of an epicyclic parametric ionization cooling system for muons is studied and compared to simulations made using G4Beamline, a GEANT4 toolkit.  
 
MOP054 Racetrack Muon Ring Cooler Using Dipoles and Solenoids for a Muon Collider lattice, solenoid, simulation, collider 202
 
  • X.P. Ding, D.B. Cline
    UCLA, Los Angeles, California, USA
  • J.S. Berg, H.G. Kirk
    BNL, Upton, Long Island, New York, USA
  • A.A. Garren
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: DOE Grant No. DE-FG02-92ER40695
A racetrack muon ring cooler for a muon collider is considered. The achromatic cooler uses both dipoles and solenoids. We describe the ring lattice and show the results of beam dynamic simulation that demonstrates a large aperture for acceptance. We also examine the 6D cooling of the muon beam in the cooler and discuss the prospects for the future.
 
 
MOP055 Robust 6D Muon Cooling in Four-sided Ring Cooler using Solenoids and Dipoles for a Muon Collider collider, solenoid, emittance, lattice 205
 
  • X.P. Ding, D.B. Cline
    UCLA, Los Angeles, California, USA
  • J.S. Berg, H.G. Kirk
    BNL, Upton, Long Island, New York, USA
  • A.A. Garren
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: DOE Grant No. DE-FG02-92ER40695
We present a four-sided ring cooler that employs both dipoles and solenoids to provide robust 6D muon cooling of large emittance beams in order to design and build a muon collider. Our studies show strong 6D cooling adequate for components of a muon collider front end.
 
 
MOP093 Precision Monitoring of Relative Beam Intensity proton, target, monitoring, background 271
 
  • N.J. Evans, S.E. Kopp
    The University of Texas at Austin, Austin, Texas, USA
  • E. Prebys
    Fermilab, Batavia, USA
 
  Funding: U.S. Department of Energy.
For future experiments at the intensity frontier, precise and accurate knowledge of beam time structure will be critical to understanding backgrounds. The proposed Mu2e experiment will utilize ~150nsec (FWHM) bunches of 107 protons at 8 GeV with a bunch-to-bunch period of 1.7 microseconds. The out-of-bunch beam must be suppressed by a factor of 10-9 relative to in-bunch beam and continuously monitored. I propose a Cerenkov based particle telescope to measure secondary production from beam interactions in a several tens of microns thick foil. Correlating timing information with beam passage allows the determination of relative beam intensity to arbitrary precision given a sufficiently long integration time. The goal is to verify out-of-bunch extinction to the level 10-6 in the span of several seconds. This allows near real-time monitoring of the initial extinction of the beam slow extracted from Fermilab's Debuncher before a system of AC dipoles and collimators, which will provide the final extinction. The effect on beam emittance is minimal, allowing the necessary continuous measurement. I will present the detector design and results of a test in Fermilab's MI-12 beamline.
 
 
MOP121 Experimental Studies on Coherent Synchrotron Radiation in the Emittance Exchange Line at the Fermilab A0 Photoinjector emittance, radiation, synchrotron, synchrotron-radiation 322
 
  • J.C.T. Thangaraj, M.D. Church, H.T. Edwards, A.S. Johnson, A.H. Lumpkin, P. Piot, J. Ruan, J.K. Santucci, Y.-E. Sun, R.M. Thurman-Keup
    Fermilab, Batavia, USA
 
  Future accelerators will employ advanced beam conditioning systems such as emittance exchangers to manipulate high brightness beams. Coherent synchrotron radiation (CSR) in the dipoles could limit the performance of the emittance exchanger. In this paper, we report the experimental and simulation studies on measuring coherent synchrotron radiation and its effects on the beam at the A0 photoinjector in the emittance exchange line. We show how CSR can be used to measure bunch length of the beam. We also report on the diagnostic scheme based on a weak skew quad in the emittance exchange line to study the CSR effects on the beam and other beam dynamics.  
 
MOP170 Combining Multiturn and Closed-Orbit Methods for Model-Independent and Fast Determination of Optical Functions in Storage Rings closed-orbit, betatron, storage-ring, synchrotron 411
 
  • B. Riemann, P. Grete, H. Huck, A. Nowaczyk, T. Weis
    DELTA, Dortmund, Germany
 
  Multiturn / turn-by-turn data acquisition is a new source for Twiss parameter determination in storage rings, while closed-orbit measurements are a long-known tool for diagnostics with conventional low-frequency beam position monitor (BPM) systems, being available at almost every storage ring. The presented method aims to join the advantages of multiturn and closed-orbit measurement methods. For uncoupled optics, there are only two correctors per oscillation plane and two multiturn BPMs needed in one drift space in the storage ring for model-independent measurement of beta and betatron phase functions at all BPMs in the ring, including conventional ones. This is a cost-effective alternative to the exclusive usage of multiturn BPMs in a storage ring, resulting in the same amount of information. This method can also be extended to include betatron coupling. In addition, we describe a possible experimental setup needed for multiturn data acquisition using a bunch-by-bunch feedback system. By applying an uncritical coherent excitation to coupled bunch modes, the accuracy of the multiturn data acquisition may be significantly improved, enabling the use of smaller drift spaces.  
 
MOP191 RHIC Spin Flipper Status and Simulation Studies resonance, betatron, synchrotron, proton 447
 
  • M. Bai, W.C. Dawson, Y. Makdisi, F. Méot, P. Oddo, C. Pai, P.H. Pile, T. Roser
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work was supported by Department of Energy of U.S.A and RIKEN, Japan
The commissioning of the RHIC spin flipper in the RHIC Blue ring during the RHIC polarized proton run in 2009 showed the detrimental effects of global vertical coherent betatron oscillation induced by the 2-AC dipole plus 4-DC dipole configuration *. Additional three AC dipoles were added to the RHIC spin flipper in the RHIC Blue ring during the summer of 2010 to eliminate the vertical coherent betatron oscillations outside the spin flipper [2]. This new design is scheduled to be commissioned during the RHIC polarized proton run in 2011. This paper presents the status of the system as well as latest simulation results.
* M. Bai , T. Roser, C. Dawson, Y. Makdisi, W. Meng, F. Meot, P. Oddo, C. Pai, P. Pile, RHIC Spin Flipper New Design and Commissioning Plan, IPAC10 proceedings, IPAC 2010, Kyoto, Japan, 2010
 
 
MOP203 RHIC Spin Flipper AC Dipole Controller feedback, controls, LLRF, heavy-ion 474
 
  • P. Oddo, M. Bai, W.C. Dawson, D.M. Gassner, M. Harvey, T. Hayes, K. Mernick, M.G. Minty, T. Roser, F. Severino, K.S. Smith
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under contract DE-AC02-98CH10886 with the U.S. Department of Energy and RIKEN, Japan.
The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to control and dynamically tune the magnets. The current implementation and results will be presented.
 
 
MOP228 TE Wave Measurements of the Electron Cloud in a Dipole Magnetic Field electron, resonance, plasma, cyclotron 531
 
  • S. De Santis, J.M. Byrd
    LBNL, Berkeley, California, USA
  • J.R. Calvey, J. Joseph, J.A. Livezey, J.P. Sikora, K.G. Sonnad
    CLASSE, Ithaca, New York, USA
  • K.C. Hammond
    Harvard University, Cambridge, Massachusetts, USA
 
  Funding: Work supported by the U.S. Department of Energy under Contract Nos. DE-AC02-05CH1123 and DE-FC02-08ER41538 and by the National Science Foundation Grant PHY-0734867.
The TE wave propagation method has become a widely used technique for measuring electron cloud density in an accelerator beampipe. In most instances the wave very low power is not capable of affecting the low-energy electrons distribution. During experiments in the CESR Damping Ring Test Accelerator (Cesr-TA), we have observed a particular situation where a resonance between the wave and a dipole magnetic field produces a large modification in the electron cloud distribution that can be measured by other detectors. We believe this resonance is strongly dependent on the geometry of standing waves pattern that discontinuities in the beampipe generate. We present measurements in Cesr-TA, which describe the effect and are in support of our hypothesis.
 
 
MOP268 RHIC 10 Hz Global Orbit Feedback System feedback, controls, power-supply, luminosity 609
 
  • R.J. Michnoff, L. Arnold, C. Carboni, P. Cerniglia, A.J. Curcio, L. DeSanto, C. Folz, C. Ho, L.T. Hoff, R.L. Hulsart, R. Karl, C. Liu, Y. Luo, W.W. MacKay, G.J. Mahler, W. Meng, K. Mernick, M.G. Minty, C. Montag, R.H. Olsen, J. Piacentino, P. Popken, R. Przybylinski, V. Ptitsyn, J. Ritter, R.F. Schoenfeld, P. Thieberger, J.E. Tuozzolo, A. Weston, J. White, P. Ziminski, P. Zimmerman
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Vibrations of the cryogenic triplet magnets at the Relativistic Heavy Ion Collider (RHIC) are suspected to be causing the beam perturbations observed at frequencies around 10 Hz. Several solutions to counteract the effect have been considered in the past, including reinforcing the magnet base support assembly, a mechanical servo feedback system, and a local beam feedback system at each of the two experimental areas. However, implementation of the mechanical solutions would be expensive, and the local feedback system was insufficient since perturbation amplitudes outside the experimental areas were still problematic. A global 10 Hz orbit feedback system is currently under development at RHIC consisting of 36 beam position monitors (BPMs) and 12 small dedicated dipole corrector magnets in each of the two counter-rotating rings. A subset of the system consisting of 8 BPMs and 4 corrector magnets in each ring was installed and successfully tested during the RHIC 2010 run; and the complete system is being installed for the 2011 run. A description of the overall system architecture and results with beam will be discussed.
 
 
MOP274 Beam Loss Monitors for NSLS-II Storage Ring electron, injection, shielding, radiation 621
 
  • S.L. Kramer, P. Cameron
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No.DE-AC02-98CH10886
The shielding for the NSLS-II storage ring will provide adequate protection for the full injected beam losses in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of <10% top-off injection beam current. This will require a system to insure that beam losses do not exceed these levels for a period of time that could cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring system will have beam loss monitors that will measure where the beam charge is lost around the ring, to warn operators if losses approach the design limits. In order to measure the charge loss quantitatively, we propose measuring the electron component of the shower as beam electrons hit the vacuum chamber wall. This will be done using the Cerenkov light as charged particles transit an ultra-pure fused silica rod placed close to the inner edge of the VC. The length of rod will collect the light from many charged particles of the spread out shower resulting from the small glancing angle of the lost beam particles to the VC wall. The design and measurements results of the prototype Cerenkov BLM will be presented.
 
 
MOP275 Beam Loss Control for the NSLS-II Storage Ring injection, controls, beam-losses, shielding 624
 
  • S.L. Kramer, J. Choi
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No.DE-AC02-98CH10886
The shielding design for the NSLS-II storage ring is designed for the full injected beam losses in two periods of the ring around the injection point, but for the remainder of the ring its shielded for <10% top-off injection beam. This will require a system to insure that beam losses do not exceed these levels for time sufficient to cause excessive radiation exposure outside the shield walls. This beam Loss Control and Monitoring (LCM) system will control the beam losses to the more heavily shielded injection region while monitoring the losses outside this region. To achieve this scrapers are installed in the injection region to intercept beam particles that might be lost outside this region. The scrapers will be thin (< 1Xrad) that will allow low energy electrons to penetrate and the subsequent dipole will separate them from the stored beam. These thin scrapers will reduce the radiation from the scraper compared to thicker scrapers. The dipole will provide significant local shielding for particles that hit inside the gap and a source for the loss monitor system that will measure the amount of beam lost in the injection region.
* Beam Loss Monitors for NSLS-II Storage Ring, S.L. Kramer & P. Cameron, these proceedings
 
 
TUOAN3 Lattice Design for the Future ERL-Based Electron Hadron Colliders eRHIC and LHeC electron, linac, lattice, collider 696
 
  • D. Trbojevic, J. Beebe-Wang, Y. Hao, D. Kayran, V. Litvinenko, V. Ptitsyn, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work performed under a Contract Number DE-AC02-98CH10886 with the auspices of the US Department of Energy.
We present a lattice design of a CW Electron Recovery Linacs (ERL) for future electron-hadron colliders eRHIC and LHeC. In eRHIC, an six-pass ERL installed in the existing Relativistic Heavy Ion Collider (RHIC) tunnel will collide 5-30 GeV polarized electrons with RHIC’s 50-250 (325) GeV polarized protons or 20-100 (130) GeV/u heavy ions. In LHeC, a stand-along 3-pass 60 GeV CW ERL will collide polarized electrons with 7 TeV protons. After collision, electron beam energy is recovered and electrons are dumped at low energy. Two superconducting linacs are located in the two straight sections in both ERLs. . The multiple arcs are made of Flexible Momentum Compaction lattice (FMC) allowing adjustable momentum compaction for electrons with different energies. The multiple arcs, placed above each other, are matched to the two linacs straight sections with splitters and combiners.
 
slides icon Slides TUOAN3 [3.002 MB]  
 
TUOAS1 Tutorial on Accelerator-Based Light Sources radiation, electron, emittance, undulator 702
 
  • M. Borland
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Accelerator-based light sources are some of the largest and most successful scientific user facilities in existence, serving tens of thousands of users each year. These important facilities enable research in diverse fields, including biology, pharmaceuticals, energy conservation and production, data storage, and archaeology. In this tutorial, we briefly review the history of accelerator-based light sources. We present an overview of the different types of accelerator-based light sources, including a description of their various operating principles, as well as a discussion of measures of performance. Technical challenges of current and future light sources are also reviewed.
 
slides icon Slides TUOAS1 [1.421 MB]  
 
TUOCN1 Accurate Computation of Transfer Maps for Realistic Beamline Elements from Surface Data wiggler, multipole, electron, damping 742
 
  • C.E. Mitchell
    NRL, Washington, DC, USA
  • A. Dragt
    UMD, College Park, Maryland, USA
 
  The behavior of orbits in charged-particle beam transport systems, including both linear and circular accelerators as well as final focus sections and spectrometers, can depend sensitively on nonlinear fringe-field and high-order-multipole effects in the various beam-line elements. The inclusion of these effects requires a detailed and realistic model of the interior and fringe fields, including their high spatial derivatives. A collection of surface fitting methods has been developed for extracting this information accurately from 3-dimensional field data on a grid, as provided by various 3-dimensional finite-element field codes. Based on these realistic field models, Lie or other methods may be used to compute accurate design orbits and accurate transfer maps about these orbits. This talk will provide a description of the methods along with example applications. An exactly-soluble but numerically challenging model field is used to provide a rigorous collection of performance benchmarks.  
slides icon Slides TUOCN1 [1.630 MB]  
 
TUOCN2 Spin-Manipulating Polarized Deuterons resonance, polarization, solenoid, electron 747
 
  • V.S. Morozov
    JLAB, Newport News, Virginia, USA
  • A. Chao
    SLAC, Menlo Park, California, USA
  • F. Hinterberger
    Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, Bonn, Germany
  • A.M. Kondratenko
    GOO Zaryad, Novosibirsk, Russia
  • A.D. Krisch, M.A. Leonova, R.S. Raymond, D.W. Sivers, V.K. Wong
    University of Michigan, Spin Physics Center, Ann Arbor, MI, USA
  • E.J. Stephenson
    IUCF, Bloomington, Indiana, USA
 
  Funding: This research was supported by grants from the German BMBF Science Ministry, its JCHP-FFE program at COSY and the US DOE.
Spin dynamics of polarized deuteron beams near depolarization resonances, including a new polarization preservation concept based on specially-designed multiple resonance crossings, has been tested in a series of experiments in the COSY synchrotron. Intricate spin dynamics with sophisticated pre-programmed patterns as well as effects of multiple crossings of a resonance were studied both theoretically and experimentally with excellent agreement. Possible applications of these results to preserve, manipulate and spin-flip polarized beams in synchrotrons and storage rings are discussed.
 
slides icon Slides TUOCN2 [4.921 MB]  
 
TUOCN4 Subpicosecond Electron Bunch Train Production Using a Phase-Space Exchange Technique quadrupole, electron, cavity, emittance 755
 
  • Y.-E. Sun, A.S. Johnson, A.H. Lumpkin, J. Ruan, R.M. Thurman-Keup
    Fermilab, Batavia, USA
  • T.J. Maxwell, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: The work was supported by the Fermi Research Alliance, LLC under the DOE Contract No. DE-AC02-07CH11359, and by Northern Illinois University under the DOE Contract No. DE-FG02-08ER41532.
Our recent experimental demonstration of a photoinjector electron bunch train with sub-picosecond structures is reported in this paper. The experiment is accomplished by converting an initially horizontal beam intensity modulation into a longitudinal phase space modulation, via a beamline capable of exchanging phase-space coordinates between the horizontal and longitudinal degrees of freedom. The initial transverse modulation is produced by intercepting the beam with a multislit mask prior to the exchange. We also compare our experimental results with numerical simulations.
 
slides icon Slides TUOCN4 [1.761 MB]  
 
TUODN1 CSR Fields From Using a Direct Numerical Solution of Maxwell's Equations radiation, vacuum, synchrotron, synchrotron-radiation 784
 
  • A. Novokhatski
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.
We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell’s equations together with Newton’s equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particle accelerators and ultrafast coherent light sources.
 
slides icon Slides TUODN1 [8.690 MB]  
 
TUODN6 Action and Phase Jump Analysis for LHC Orbits lattice, simulation, interaction-region, quadrupole 796
 
  • O.R. Blanco, J.F. Cardona
    UNAL, Bogota D.C, Colombia
 
  Funding: COLCIENCIAS, Programa Jovenes Investigadores e Innovadores "Virginia Gutierrez de Pineda" 2009 Direccion de Investigacion Sede Bogota, Universidad Nacional de Colombia (DIB, UNAL)
Action and phase orbit correction method is implemented to detect magnetic errors in LHC orbits of late 2009 run. The last achievements in the theory of action and phase jump analysis have been included to reduce action and phase plots noise and to increase precision on the calculation of linear errors. The validation of the implementation is performed by MAD-X simulations of the LHC lattice V6.5, where dipole and quadrupole errors are included and recovered within 0.02%. Then, the implementation is applied to experimental orbits, taken from the 2009 run during November and December, where several interaction regions are analyzed.
orblancog@bt.unal.edu.co, Universidad Nacional de Colombia
jfcardona@unal.edu.co, Professor, Universidad Nacional de Colombia
 
slides icon Slides TUODN6 [1.867 MB]  
 
TUP002 Study of Robinson Instabilities with a Higher-Harmonic Cavity for HLS Phase II Project cavity, simulation, quadrupole, coupling 808
 
  • Y. Zhao, W. Li, L. Wang, C.-F. Wu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  In the phase II project of Hefei Light Source, a fourth-harmonic “Landau” cavity will be operated in order to suppress coupled-bunch instabilities and increase the beam lifetime of Hefei Storage Ring. Instabilities limit the utility of the higher-harmonic cavity when the storage ring is operated with a small momentum compaction. Analytical modeling and simulations show that the instabilities result from Robinson mode coupling. In the analytic modeling, we operate an algorithm to consider Robinson instabilities. To study the evolution of unstable behavior, simulations have been performed in which macroparticles are distributed among the buckets. Both the analytic modeling and simulations agree for passive operation of the harmonic cavity.  
 
TUP020 A New Continuous Muon Beam Line Using a Highly Efficient Pion Capture System at RCNP solenoid, target, proton, simulation 856
 
  • H. Sakamoto, Y. Kuno, A. Sato
    Osaka University, Osaka, Japan
  • S. Cook, R.T.P. D'Arcy
    UCL, London, United Kingdom
  • M. Fukuda, K. Hatanaka
    RCNP, Osaka, Japan
  • T. Ogitsu, A. Yamamoto, M.Y. Yoshida
    KEK, Ibaraki, Japan
 
  A new muon source with continuous time structure is under construction at Research Center of Nuclear Physics (RCNP), Osaka University. The ring cyclotron of RCNP can provide 400W 400MeV proton beam. Using this proton beam, the MuSIC produces a high intense muon beam. The target muon intensity is 108 muons/second, which is achieved by a pion capture with great efficiency to collect pions and muons using a solenoidal magnetic field. A pion production target system is located in a 3.5 Tesla solenoidal magnetic field generated by a super-conducting solenoid magnet. The proton beam hits the target, and backward pions and muons are captured by the field. Then they are transported by a curved solenoid beam line to experimental apparatus. The construction has been started in 2010, and would be finished in 5 years. We plan to carry out not only an experiment to search the lepton flavor violating process but also other experiments for muon science and their applications using the intense muon beam.  
 
TUP053 Ferrite HOM Load Surrounding a Ceramic Break HOM, damping, gun, cavity 904
 
  • L.R. Hammons, H. Hahn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Several future accelerator projects at the Relativistic Heavy Ion Collider are being developed using a super-conducting electron energy recovery LINAC along with a superconducting electron gun as the source. All of the projects involve high-current, high-charge operation and require effective higher-order mode (HOM) damping to achieve the performance objectives. Among the HOM designs being developed is a waveguide-type HOM load for the electron gun consisting of a ceramic break surrounded by ferrite tiles. This design is innovative in its approach and achieves a variety of ends including broadband HOM damping and protection of the superconducting cavity from potential damage to the ferrite tiles. Furthermore, the ceramic is an effective thermal transition. This design may be useful in various applications since it readily allows for replacement of the ferrite tiles with other materials and may also be useful for testing the absorbing properties of these materials. In this paper, the details of the design will be discussed along with current modelling and testing results as well as future plans.
 
 
TUP064 Designing Multiple Cavity Classes for the Main Linac of Cornell's ERL cavity, HOM, linac, higher-order-mode 937
 
  • N.R.A. Valles, M. Liepe
    CLASSE, Ithaca, New York, USA
 
  Funding: Work supported by NSF Grant No. PHY-0131508, and NSF/NIH-NIGMS Grant No. DMR-0937466
Cornell is currently developing a high current Energy Recovery Linac. The baseline 7-cell cavity design for the main linac has already been completed, and prototyping has begun, as of Fall 2010. Previous work showed that increasing the relative cavity-to-cavity frequency spread increases the beam break-up current through the linac. Simulations show that expected machining variations will introduce a relative HOM frequency spread of 0.5·10-3, corresponding to 150 mA of threshold current. The key idea of this work is to increase the relative cavity-to-cavity frequency spread by designing several classes of 7-cell cavities obtained by making small changes to the baseline center cell shape. This allows a threshold current in excess of 450 mA, which is well above the 100 mA goal for the Cornell Energy Recovery Linac.
 
 
TUP104 Nb3Sn Block-coil Dipole for High-field Substitution in the LHC Lattice lattice, insertion, superconductivity, multipole 1033
 
  • A. Sattarov, E.F. Holik, A.D. McInturff, P.M. McIntyre
    Texas A&M University, College Station, Texas, USA
 
  Funding: This work was supported in part by the U.S. Department of Energy under Grant DE-FG02-06ER41405
A design is being developed to prototype for a dipole for this purpose: a block-coil dipole with 13 T short- sample field, 11 T working field, and 6 cm aperture. The dipole is a natural application of the high-field dipole strategy developed at Texas A&M, using simple pancake windings, flux-plate suppression of low-field multipoles, and bladder preloading. A short model dipole is planned.
 
 
TUP105 Fabrication of a Model Polyhedral Superconducting Cavity cavity, HOM, wakefield, alignment 1035
 
  • N. Pogue, P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, Texas, USA
 
  Funding: This work was supported in part by the U.S. Department of Energy under Grant DE-FG02-06ER41405
The polyhedral cavity is a superconducting cavity structure in which a multi-cell cavity is built from a Roman-arch assembly of arc segments. Each segment has a Tesla-like r-z profile, and is fabricated either by bonding a Nb foil to a Cu substrate wedge or by depositing a Nb surface on the Cu substrate. The segments are assembled with an arrangement of locking rings and alignment pins, with a controlled narrow gap between segments over much of the arc-span of adjoining segments. A tubular channel is machined in the mating surfaces of the Cu wedges. Dipole modes are suppressed by locating along each channel a tube coated with rf-terminating ferrite. A first model of the cavity is being built to investigate mode structure, evaluate alternatives for the Nb surface fabrication, and develop assembly procedures.
 
 
TUP145 Introduction to HLSII Storage Ring Conventional Magnets quadrupole, sextupole, storage-ring, synchrotron 1100
 
  • H. Zhang, G. Feng, W.W. Li, W. Li, J.J. Liang, L. Wang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  HLS (Hefei Light Source) is a dedicated synchrotron radiation research facility, whose emittance is relatively large. In order to improve the performance of HLS, especially getting higher brilliance synchrotron radiation and increasing the number of straight section for insertion devices, an upgrade project named HLSII will be proceeded soon. The storage ring lattice comprises 8 dipoles, 32 quadrupoles and 32 combined function sextupoles. Design and analysis of the magnets are showed in the paper. the multipurpose combined function magnet is the first one designed and used in China. Mechanical design and fabrication procedures for the magnets are presented also.  
 
TUP146 Large Aperture Quadrupole Magnets for ISIS TS-1 and TS-2 quadrupole, target, proton, neutron 1103
 
  • S.M. Gurov, A.M. Batrakov, M.F. Blinov, F.A. Emanov, V.V. Kobets, V.A. Polukhin, A.S. Tsyganov, P. Vobly, T.A. Yaskina
    BINP SB RAS, Novosibirsk, Russia
  • S.J.S. Jago, J. Shih, S.F.S. Tomlinson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS pulsed neutron and muon source at the Rutherford Appleton Laboratory has two target stations TS-1 and TS-2. Budker Institute of Nuclear Physics developed, produced and delivered seven type Q13 quadrupole magnets with an aperture diameter of 310 mm for TS-2 beam transfer line. Later an additional three quadrupoles with integrated dipole coils were developed and delivered to ISIS TS1. To improve the field quality across the full current range a special pole profile and end chamfer were designed using the MERMAID code. The magnetic field map was measured by a set of Hall probes. Moreover, BINP produced a rotating coil with radius 120 mm for field quality measurements.  
 
TUP147 Rotating Dipole and Quadrupole Field for a Multiple Cathode System quadrupole, cathode, electron, gun 1106
 
  • X. Chang, I. Ben-Zvi, J. Kewisch, V. Litvinenko, W. Meng, A.I. Pikin, V. Ptitsyn, T. Rao, B. Sheehy, J. Skaritka, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • E. Wang
    PKU/IHIP, Beijing, People's Republic of China
  • T. Xin
    Stony Brook University, Stony Brook, USA
 
  A multiple cathode system has been designed to provide the high average current polarized electron bunches for the future electron-ion collider eRHIC. One of the key research topics in this design is the technique to generate a combined dipole and quadrupole rotating field at high frequency (700 kHz). This type of field is necessary for combining bunches from different cathodes to the same axis with minimum emittance growth. Our simulations and the prototype test results to achieve this will be presented.  
 
TUP149 Magnetic Field Mapping and Integral Transfer Function Matching of the Prototype Dipoles for the NSLS-II at BNL electron, storage-ring, synchrotron, quadrupole 1112
 
  • P. He, M. Anerella, G. Ganetis, R.C. Gupta, A.K. Jain, P.N. Joshi, J. Skaritka, C.J. Spataro, P. Wanderer
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source-II (NSLS-II) storage ring at Brookhaven National Laboratory (BNL) will be equipped with 54 dipole magnets having a gap of 35 mm, and 6 dipoles having a gap of 90 mm. The large aperture magnets are necessary to allow the extraction of long-wavelength light from the dipole magnet to serve a growing number of users of low energy radiation. The dipoles must not only have good field homogeneity (0.015% over a 40 mm x 20 mm region), but the integral transfer functions and integral end harmonics of the two types of magnets must also be matched. The 35 mm aperture dipole has a novel design where the yoke ends are extended up to the outside dimension of the coil using magnetic steel nose pieces. A Hall probe mapping system has been built with three Group 3 Hall probes mounted on a 2-D translation stage. The probes are arranged with one probe in the midplane of the magnet and the others vertically offset by ±10 mm. The field is mapped along a nominal 25 m radius beam trajectory. The results of measurements in the as-received magnets, and with modifications made to the nose pieces will be presented.  
 
TUP152 Dipole Corrector Magnets for the LBNE Beam Line simulation, quadrupole, target, synchrotron 1115
 
  • M. Yu, D.J. Harding, G. Velev
    Fermilab, Batavia, USA
 
  The conceptual design of a new dipole corrector magnet has been thoroughly studied. The planned Long-Baseline Neutrino Experiment (LBNE) beam line will require correctors capable of greater range and linearity than existing correctors, so a new design is proposed based on the horizontal trim dipole correctors built for the Main Injector synchrotron at Fermilab. The gap, pole shape, length, and number of conductor turns remain the same. To allow operation over a wider range of excitations without overheating, the conductor size is increased, and to maintain better linearity, the back leg thickness is increased. The magnetic simulation was done using ANSYS to optimize the shape and the size of the yoke. The thermal performance was also modeled and analyzed.  
 
TUP164 Magnetic Design of e-lens Solenoid and Corrector System for RHIC solenoid, electron, proton, superconducting-magnet 1130
 
  • R.C. Gupta, M. Anerella, W. Fischer, G. Ganetis, A.K. Ghosh, X. Gu, A.K. Jain, P. Kovach, A. Marone, A.I. Pikin, S.R. Plate, P. Wanderer
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
As a part of the proposed electron lens system for RHIC, two 6 T, 200 mm aperture, 2.5 meter long superconducting solenoids are being designed and built at BNL. Because of several demanding requirements this has become a unique and technologically advanced magnet. For example, the field lines on axis must be straight over the length of the solenoid within ±50 microns. Since this is beyond the normal construction techniques, a correction package becomes an integral part of the design for which a new design has been developed. In addition, a minimum of 0.3 T field is required along the electron beam trajectory in the space between magnets. To achieve this fringe field superconducting solenoidal coils have been added at the two ends of the main solenoid. The main solenoid itself is a challenging magnet because of the high Lorentz forces and stored energy associated with the large aperture and high fields. An innovative structure has been developed to deal with the large axial forces at the ends. This paper will summarize the magnetic design and optimization of the entire package consisting of the main solenoid, the fringe field solenoids, and the corrector system.
 
 
TUP172 Studies of High-field Sections of a Muon Helical Cooling Channel with Coil Separation target, solenoid, cavity, superconductivity 1148
 
  • M.L. Lopes, V.S. Kashikhin, K. Yonehara, M. Yu, A.V. Zlobin
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
The Helical Cooling Channel (HCC) was proposed for 6D cooling of muon beams required for muon collider and some other applications. HCC uses a continuous absorber inside superconducting magnets which produce solenoidal field superimposed with transverse helical dipole and helical gradient fields. HCC is usually divided into several sections each with progressively stronger fields, smaller aperture and shorter helix period to achieve the optimal muon cooling rate. This paper presents the design issues of the high field section of HCC with coil separation. The effect of coil spacing on the longitudinal and transverse field components is presented and its impact on the muon cooling is evaluated and discussed. The paper also describes methods for field corrections and their practical limits.
 
 
TUP174 Warm Magnetic Field Measurements of LARP HQ Magnet quadrupole, luminosity, alignment, multipole 1154
 
  • X. Wang, S. Caspi, D.W. Cheng, D.R. Dietderich, H. Felice, P. Ferracin, R.R. Hafalia, J.M. Joseph, J. Lizarazo, M. Martchevskii, C. Nash, G.L. Sabbi, C. Vu
    LBNL, Berkeley, California, USA
  • G. Ambrosio, R. Bossert, G. Chlachidze, J. DiMarco, V. Kashikhin
    Fermilab, Batavia, USA
  • J. Schmalzle, P. Wanderer
    BNL, Upton, Long Island, New York, USA
 
  The US-LHC Accelerator Research Program is develop- ing and testing a high-gradient quadrupole (HQ) magnet, aiming at demonstrating the feasibility of Nb3Sn technologies for the LHC luminosity upgrade. The 1 m long HQ magnet has a 120 mm bore with a conductor-limited gradient of 219 T/m at 1.9 K and a peak field of 15 T. HQ includes accelerator features such as alignment and field quality. Here we present the magnetic measurement results obtained at LBNL with a constant current of 30 A. A 100 mm long circuit-board rotating coil developed by FNAL was used and the induced voltage and flux increment were acquired. The measured b6 ranges from 0.3 to 0.5 units in the magnet straight section at a reference radius of 21.55 mm. The data reduced from the numerical integration of the raw voltage agree with those from the fast digital integrators.  
 
TUP177 Open Midplane Dipoles for a Muon Collider collider, radiation, storage-ring, luminosity 1160
 
  • R.J. Weggel, J. Kolonko, R.M. Scanlan
    Particle Beam Lasers, Inc., Northridge, California, USA
  • M. Anerella, R.C. Gupta, H.G. Kirk, R. B. Palmer, J. Schmalzle
    BNL, Upton, Long Island, New York, USA
  • D.B. Cline, X.P. Ding
    UCLA, Los Angeles, California, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 and SBIR contract DOE Grant Numbers DE-FG02-07ER84855 and DE-FG02-08ER85037.
For a muon collider with copious decay particles in the plane of the storage ring, open-midplane dipoles (OMD) may be preferable to tungsten-shielded cosine-theta dipoles of large aperture. The OMD should have its midplane completely free of material, so as to dodge the radiation from decaying muons. Analysis funded by a Phase I SBIR suggests that a field of 10-20 T should be feasible, with homogeneity of 1x10-4 and energy deposition low enough for conduction cooling to 4.2 K helium. If funded, a Phase II SBIR would refine the analysis and build and test a proof-of-principle magnet.
 
 
TUP178 Current Progress of TAMU3: A Block Coil Stress-managed High Field (>12T) Nb3Sn Dipole status, collider, target, controls 1163
 
  • E.F. Holik, C.P. Benson, R. Blackburn, N. Diaczenko, T. Elliott, A. Jaisle, A.D. McInturff, P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, Texas, USA
 
  Funding: This work was supported by the U.S. Department of Energy under Grant DE-FG02-06ER41405
TAMU3 is a block-coil short model dipole which embodies for the first time at high field (>12T) strength the techniques of stress management within the superconducting windings. The dipole consists of two planar racetrack coil assemblies, assembled within the rectangular aperture of a flux return core. Each assembly contains an inner and outer winding, and a high-strength support structure which is integrated within the assembly to intercept the Lorentz stress produced from the inner winding so that it does not accumulate to produce high stress in the outer winding. Iso-static preload is applied by pressurizing a set of thin stainless steel bladders with molten Woods metal and then freezing the metal under pressure. Current technology, difficulties, and present status of construction of magnet assembly will be presented.
 
 
TUP190 Upgrade of the APS Booster Synchrotron Magnet Ramp booster, controls, injection, synchrotron 1181
 
  • C. Yao, B. Deriy, G. Feng, H. Shang, J. Wang
    ANL, Argonne, USA
 
  Funding: Work supported by U.S. Department of Energy, Offices of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06-CH11357
The APS booster is a 7-GeV electron synchrotron with 0.5-second cycle time. Both voltage and current ramp modes were in the original design but only the voltage ramp has been commissioned. Two software-based ramp control programs are used to regulate the current waveform to a linear ramp. The system has been operated for user beam operations for many years. Some instability exists in the ramp correction that requires manual intervention from time to time by the operators. Sensitivity of magnet currents to external changes, such as AC line voltage, harmonic interference from the high-power rf system, etc., has been observed. In order to meet the increased single-bunch-charge requirement of the APS upgrade we need more flexible current ramps such as flat porches for injection and extraction and smooth transitions. Recent efforts to develop an energy-saving operation mode also call for ramp improvement. This paper presents test results of a workstation-based current regulation program and an FPGA-based implementation as a future upgrade.
 
 
TUP208 DESIGNING A BEAM TRANSPORT SYSTEM FOR RHIC’S ELECTRON LENS electron, solenoid, controls, beam-transport 1205
 
  • X. Gu, W. Fischer, R.C. Gupta, J. Hock, Y. Luo, M. Okamura, A.I. Pikin, D. Raparia
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We designed two electron lenses to apply head-on beam-beam compensation for RHIC; they will be installed near IP10. The electron-beam transport system is an important subsystem of the entire electron-lens system. Electrons are transported from the electron gun to the main solenoid and further to the collector. The system must allow for changes of the electron beam size inside the superconducting magnet, and for changes of the electron position by 5 mm in the horizontal- and vertical-planes.
 
 
TUP221 Helium Pressures in RHIC Vacuum Cryostats and Relief Valve Requirements from Magnet Cooling Line Failure vacuum, simulation, injection, quadrupole 1229
 
  • C.J. Liaw, R. Than, J.E. Tuozzolo
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT® model, which simulated the 4.5K/ 4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results.
 
 
TUP227 Status of NSLS-II Storage Ring Vacuum Systems vacuum, photon, multipole, radiation 1244
 
  • H.-C. Hseuh, A. Blednykh, L. Doom, M.J. Ferreira, C. Hetzel, J. Hu, S. Leng, C. Longo, V. Ravindranath, K. Roy, S.K. Sharma, F.J. Willeke, K. Wilson, D. Zigrosser
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work performed under the auspices of U.S. Department of Energy, under contract DE-AC02-98CH10886
National Synchrotron Light Source II (NSLS-II), being constructed at Brookhaven National Laboratory, is a 3- GeV, high-flux and high-brightness synchrotron radiation facility with a nominal current of 500 mA. The storage ring vacuum system has extruded aluminium chambers, with ante-chamber for photon fans and distributed NEG strip pumping. Discrete photon absorbers are used to intercept the un-used bending magnet radiation. In-situ bakeout is implemented to achieve fast conditioning during initial commissioning and after interventions.
 
 
TUP236 Progress of a Gradient Damping Wiggler of the ALPHA Storage Ring damping, wiggler, storage-ring, electron 1265
 
  • C.W. Huang, D.J. Huang
    NTHU, Hsinchu, Taiwan
  • S.D. Chen
    NCTU, Hsinchu, Taiwan
  • M.-H. Huang, C.-S. Hwang, C.Y. Kuo, F.-Y. Lin, Y.T. Yu
    NSRRC, Hsinchu, Taiwan
  • S.-Y. Lee
    IUCF, Bloomington, Indiana, USA
 
  The main purpose of a gradient damping wiggler (GDW) to be installed in the Alpha storage ring in Indiana University is to correct the momentum-compaction factor and the damping partition in the Alpha storage ring. One middle pole and two outer poles in one set of the GDW are installed on the same girder. Two sets of GDW will be installed in the two short straight sections. The dipole and gradient-field strengths of the middle (outer) pole are 0.67 T (-0.67 T) and 1.273 T m-1 (1.273 T m-1), respectively. One completed set of GDW is already fabricated; we shall add an end shim to improve the region of effective good field within which the middle and outer poles along the transverse x-axis (△B/B = 0.1 %) are ±50 and ±40 mm respectively. We used a trim coil on the three poles to adjust the first and second integral fields to zero. Here we discuss the integral magnetic field features along the straight trajectory and the ideal orbital trajectory with a Hall probe mapping system, and present an analysis of the magnetic field.  
 
TUP279 A CW RFQ Prototype rfq, simulation, linac, vacuum 1352
 
  • U. Bartz, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  A short RFQ prototype was built for tests of high power RFQ structures. We will study thermal effects and determine critical points of the design. HF-simulations with CST Microwave Studio and measurements were done. The RF-tests with continues power of 20 kW/m and simulations of thermal effects with ALGOR were finished successfully. Optimization of some details of the facility are on focus now. First results and the status of the project will be presented.  
 
WEOBN2 Real-Time Beam Control at the LHC feedback, controls, diagnostics, coupling 1399
 
  • R.J. Steinhagen
    CERN, Geneva, Switzerland
 
  At the LHC, real-time feedback systems continually control the orbit, tune, coupling, and chromaticity. Reliable and precise control of these parameters is essential to avoid superconducting magnet quenches or damage to LHC components. The speaker will review the underlying principles and hardware, and describe experiences with these systems during LHC commissioning and operations.  
slides icon Slides WEOBN2 [5.475 MB]  
 
WEOCS2 Development of Nb3Sn 11 T Single Aperture Demonstrator Dipole for LHC Upgrades collimation, magnet-design, multipole, injection 1460
 
  • A.V. Zlobin, N. Andreev, G. Apollinari, E.Z. Barzi, V. Kashikhin, A. Nobrega, I. Novitski
    Fermilab, Batavia, USA
  • B. Auchmann, M. Karppinen, L. Rossi
    CERN, Geneva, Switzerland
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
The LHC collimation upgrade foresees additional collimators installed in dispersion suppressor regions. To obtain the necessary space for the collimators, a solution based on the substitution of LHC main dipoles for stronger dipoles is being considered. CERN and FNAL have started a joint program to demonstrate the feasibility of Nb3Sn technology for this purpose. The goal of the first phase is the design and construction of a 2-m long single-aperture demonstrator magnet with a nominal field of 11 T at 11.85 kA with 20% margin. This paper describes the magnetic and mechanical design of the demonstrator magnet and summarizes its design parameters.
 
slides icon Slides WEOCS2 [2.523 MB]  
 
WEODS4 High Gradient Normal Conducting Radio-Frequency Photoinjector System for Sincrotrone Trieste gun, cathode, quadrupole, coupling 1504
 
  • L. Faillace, R.B. Agustsson, P. Frigola
    RadiaBeam, Santa Monica, USA
  • H. Badakov, A. Fukasawa, J.B. Rosenzweig, A. Yakub
    UCLA, Los Angeles, California, USA
  • F. Cianciosi, P. Craievich, M. Trovò
    ELETTRA, Basovizza, Italy
  • L. Palumbo
    Rome University La Sapienza, Roma, Italy
  • B. Spataro
    INFN/LNF, Frascati (Roma), Italy
 
  Radiabeam Technologies is leading a multi-organizational collaboration by UCLA, INFN and MATS to deliver a high gradient normal conducting radio frequency (NCRF) 1.6 cell photoinjector system to the Sincrotrone Trieste facility. Designed to operate with a 120MV/m accelerating gradient, this dual feed, fat lipped racetrack coupler design is modeled after the LCLS photoinjector with a novel demountable cathode which permits cost effective cathode exchange. Full overview of the project to date will be discussed along with basic, design, engineering, manufacturing and RF test results.  
slides icon Slides WEODS4 [3.186 MB]  
 
WEP003 A New Correction Scheme to Compensate Depolarizing Integer Resonances at ELSA resonance, quadrupole, polarization, electron 1507
 
  • O. Boldt, A. Dieckmann, F. Frommberger, W. Hillert
    ELSA, Bonn, Germany
 
  Funding: BMBF
Since more than four decades, the University of Bonn supports research at the in-house electron accelerator ELSA. Presently, the polarized electrons gained from an inverted source are accumulated in a stretcher ring and accelerated within a fraction of a second up to 3.2 GeV. During the fast ramping various depolarizing resonances are crossed. By taking several expedient measures (closed orbit correction, tune jumping, etc.) a high polarization degree of up to 65% is reached. One important part of these measures is the harmonic correction of integer resonances. Those resonances are compensated by applying additional horizontal fields, distributed sinusoidally along an one-turn orbit length. In case of an appropriate setting of amplitude and phase, all resonance driving effects should be neutralized completely. First studies have shown that vertical displacements and resulting horizontal fields in the quadrupole magnets, caused by the resonance correction, have to be taken into account as well. With regard to a new correction scheme, the first experimental results confirmed by simulative and theoretical studies will be presented.
 
 
WEP005 Modeling the Low-Alpha-Mode at ANKA with the Accelerator Toolbox quadrupole, optics, synchrotron, sextupole 1510
 
  • M. Klein, N. Hiller, A. Hofmann, E. Huttel, V. Judin, B. Kehrer, S. Marsching, A.-S. Müller
    KIT, Karlsruhe, Germany
  • K.G. Sonnad
    CLASSE, Ithaca, New York, USA
 
  The ANKA storage ring is operated frequently with low momentum compaction lattices to produce short bunches for the generation of coherent synchrotron radiation in the THz range. The bunch length can be varied in steps from one centimeter down to the sub millimeter level. These low alpha optics are modeled by using the Matlab based tools, Accelerator Toolbox (AT) and LOCO. The results are compared with measurements such as orbit response matrices, dispersion and chromaticity. This paper provides results of a study on the feasibilities as well as limitations of the measurements and calculations.  
 
WEP010 Design of the Bilbao Accelerator Low Energy Extraction Lines quadrupole, linac, DTL, neutron 1519
 
  • Z. Izaola, I. Rodríguez
    ESS-Bilbao, Zamudio, Spain
  • E. Abad, I. Bustinduy, R. Martinez, F. Sordo Balbin, D. de Cos
    ESS Bilbao, Bilbao, Spain
  • D.J. Adams, S.J.S. Jago
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
  • V. Etxebarria, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  Funding: European Spallation Source - Bilbao
The ESS-Bilbao linac will accelerate H+ and H− beams up to 50 MeV, which need to be transported to three laboratories, where different types of experiments will be conducted. This paper reports on the preliminary design of the transfer line, which is mainly performed based on beam dynamics simulations.
 
 
WEP011 Low Energy Beam Transport Developments for the Bilbao Accelerator ion, rfq, ion-source, simulation 1522
 
  • I. Bustinduy, D. de Cos
    ESS Bilbao, Bilbao, Spain
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
  • V. Etxebarria, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • J. Feuchtwanger, Z. Izaola, J.L. Munoz, I. Rodríguez
    ESS-Bilbao, Zamudio, Spain
 
  Funding: European Spallation Source - Bilbao
In this work we present a future upgrade of the ESS-Bilbao multi-source Low Energy Transport System (LEBT). It consists of a set of solenoids and steering dipoles used to match the characteristics of both ion source beams i.e., the Electron Cyclotron Resonance (ECR) H+/D+ source and the H− Penning source, to the input specifications of the RFQ. Different configurations of the geometry and magnetic fields are studied in order to minimize the emittance growth along the LEBT, while providing the beam specifications required by the RFQ.
 
 
WEP031 Low-Emittance Lattice Designs for ALS Ultimate Upgrade emittance, lattice, storage-ring, quadrupole 1549
 
  • C. Sun, H. Nishimura, D. Robin, C. Steier, W. Wan
    LBNL, Berkeley, California, USA
 
  Based upon the Theoretical Minimum Emittance (TME) technique, a new method has been developed to optimize low-emittance and low-beta lattices for further brightness upgrades at the Advanced Light Source (ALS). The study provides us a different perspective on the lattice design, and confirms results earlier found using both Global Scan of All Stable Settings (GLASS) and Genetic Algorithms (GA) techniques. Since the optimal low-beta lattice may have a dynamic aperture too small to allow off-axis injection, to overcome this problem, an alternating high-low beta lattice could be used for the upgrade. Several options of these high-low beta lattices are investigated using Genetic Algorithms.  
 
WEP039 Tracking Stripped Proton Particles in SNS Ring Injection Momentum Dump Line proton, simulation, collimation, injection 1567
 
  • J. G. Wang
    ORNL, Oak Ridge, Tennessee, USA
 
  3D computer simulations are performed to study magnetic field distributions and particle trajectories along the SNS ring injection momentum dump line. Optical properties and transfer maps along the dump line are calculated. The stripped proton particle distributions on the dump window are analyzed. The study has provided useful information for the redesign of the SNS ring injection beam dump.  
 
WEP050 Advances in Modeling the University of Maryland Electron Ring focusing, simulation, quadrupole, lattice 1585
 
  • R.A. Kishek, B.L. Beaudoin, S. Bernal, M. Cornacchia, K. Fiuza, I. Haber, T.W. Koeth, P.G. O'Shea, D.F. Sutter, H.D. Zhang
    UMD, College Park, Maryland, USA
 
  Funding: Work funded by the US Dept. of Energy Offices of Fusion Energy Sciences and High Energy Physics, and by the Dept. of Defense Office of Naval Research and the Joint Technology Office.
The University of Maryland Electron Ring (UMER) is a research accelerator designed to operate with extreme space charge. The existence of high-precision experimental measurements of tune, dispersion, chromaticity, response matrix elements, and other parameters*, **, *** has prompted a revision of the models used to describe the machine. Due to the low energy (10 keV) of the electrons, the dipole and quadrupole magnets used are air-core printed-circuit coils whose fields we calculate using a Biot-Savart solver. Different levels of approximations for the magnetic fields have been developed. We present simulation results from the particle-in-cell code WARP, and from the accelerator code, ELEGANT. These are compared both against simpler models as well as experimental results. The improved modeling has significantly reduced the discrepancies between simulation and experiment.
* D.F. Sutter, et al., Proc. PAC 2009
** C. Wu, et al., Proc. PAC 2009
*** S. Bernal, et al., Proc. AAC 2010
 
 
WEP065 Multiobjective Dynamic Aperture Optimization at NSLS-II lattice, sextupole, quadrupole, damping 1597
 
  • L. Yang, W. Guo, S. Krinsky, Y. Li
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In this paper we present a multiobjective approach to the dynamic aperture (DA) optimization. Taking the NSLS- II lattice as an example, we have used both sextupoles and quadrupoles as tuning variables to optimize both on-momentum and off-momentum DA. The geometric and chromatic sextupoles are used for nonlinear properties while the tunes are independently varied by quadrupoles. The dispersion and emittance are fixed during tunes variation. The algorithms, procedures, performances and results of our optimization of DA will be discussed and they are found to be robust, general and easy to apply to similar problems.
 
 
WEP074 Correcting Aberrations in Complex Magnet Systems for Muon Cooling Channels simulation, collider, resonance, quadrupole 1615
 
  • J.A. Maloney, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois, USA
  • A. Afanasev, R.P. Johnson
    Muons, Inc, Batavia, USA
  • Y.S. Derbenev
    JLAB, Newport News, Virginia, USA
  • V.S. Morozov
    ODU, Norfolk, Virginia, USA
 
  Funding: Supported in part by DOE SBIR grant DE-SC0005589
Designing and simulating complex magnet systems needed for cooling channels in both neutrino factories and muon colliders requires innovative techniques to correct for both chromatic and spherical aberrations. Optimizing complex systems, such as helical magnets for example, is also difficult but essential. By using COSY INFINITY, a differential algebra based code, the transfer and aberration maps can be examined to discover what critical terms have the greatest influence on these aberrations.
 
 
WEP107 CSR Shielding Experiment wakefield, shielding, linac, electron 1677
 
  • V. Yakimenko, A.V. Fedotov, M.G. Fedurin, D. Kayran
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • P. Muggli
    USC, Los Angeles, California, USA
 
  It is well known that the emission of coherent synchrotron radiation (CSR) in a dipole magnets leads to increase in beam energy spread and emittance. At the Brookhaven National Laboratory Accelerator Test Facility (ATF) we study the suppression of CSR emission affect on electron beam in a dipole magnet by two vertically spaced conducting plates. The gap between the plates is controlled by four actuators and could be varied from 0 to 14 mm. Our experimental results show that closing the plates significantly reduces both the beam energy loss and CSR-induced beam energy spread. In this paper we present selected results of the experiment and compare then with rigorous analytical theory.  
 
WEP110 Electron Cloud Modeling for the ILC Damping Rings lattice, vacuum, photon, electron 1686
 
  • J.A. Crittenden, D. Sagan
    CLASSE, Ithaca, New York, USA
  • K.G. Sonnad
    Cornell University, Ithaca, New York, USA
 
  Funding: Support by DOE contract DE-FC02-08ER41538 and NSF contract PHY-0734867
Electron cloud buildup is a primary concern for the performance of the damping rings under development for the International Linear Collider. We have performed synchrotron radiation profile calculations for the 6.4-km DC04 and 3.2-km DSB3 lattice designs using the SYNRAD utility in the Bmad accelerator software library. These results are then used to supply input parameters to the electron cloud modeling package ECLOUD. Contributions to coherent tune shifts from the field-free sections and from the dipole and quadrupole magnets have been calculated, as well as the effect of installing solenoid windings in the field-free regions. For each element type, SYNRAD provides ring occupancy, average beam sizes, beta function values, and beta-weighted photon rates for the coherent tune shift calculation. An approximation to the antechamber design has been implemented in ECLOUD as well, moving the photoelectron source point to the edges of the antechamber entrance and removing cloud particles which enter the antechamber.
 
 
WEP112 Accurate Simulation of the Electron Cloud in the Fermilab Main Injector with VORPAL electron, simulation, proton, quadrupole 1692
 
  • P. Lebrun, P. Spentzouris
    Fermilab, Batavia, USA
  • J.R. Cary, P. Stolz, S.A. Veitzer
    Tech-X, Boulder, Colorado, USA
 
  Precision simulations of the electron cloud at the Fermilab Main Injector (MI) have been studied using the plasma simulation code VORPAL. Fully 3D and self consistent solutions that includes Yee-type E.M. field maps, electron spatial distributions and the time evolution of the cloud with respect to the bunch structure in the MI. The microwave absorption experiment has been simulated in detail and the response of the antennas has been derived from the VORPAL's pseudo-potential data. Based on the results of these simulations and the ongoing experimental program, two distinct new experimental techniques are proposed. The first one is based on the use BPM plates placed in dipole fields and that are made of material(s) for which the secondary emission is well characterized. The second technique would be based on the optical, or ultra-violet, detection of the radiation emitted (inverse photo-electric effect) when the cloud interacts with the inner surface of the beam pipe. As the microwave absorption experiment, this techique is non-invasise and has the advantage of providing spatial images of the cloud as well as accurate timing (ns) information.  
 
WEP116 Bucket Shaking Stops Bunch Dancing in Tevatron synchrotron, simulation, impedance, damping 1704
 
  • A.V. Burov, C.-Y. Tan
    Fermilab, Batavia, USA
 
  Bunches in Tevatron are known to be longitudinally unstable: their collective oscillations stay without any sign of decay. Typically, a feedback damper is used to stop these oscillations. Recently, it was theoretically predicted that the oscillations can be stabilized by means of small bucket shaking*. Detailed measurements in Tevatron have shown that this method does work. In this paper, an essential theory and specific observations of the related process are presented.
* A. Burov, “Dancing Bunches as van Kampen Modes”, this conference.
 
 
WEP139 Comparison of 1D and 2D CSR Models with Application to the Fermi@Elettra Bunch Compressors emittance, electron, synchrotron, synchrotron-radiation 1743
 
  • G. Bassi
    BNL, Upton, New York, USA
  • J.A. Ellison, K.A. Heinemann
    UNM, Albuquerque, New Mexico, USA
 
  Funding: Work partially supported by DOE grant DE-FG02-99ER41104
We compare our 2D mean field (Vlasov-Maxwell) treatment of coherent synchrotron radiation (CSR) effects with 1D approximations of the CSR force which are commonly implemented in CSR codes. In our model we track particles in 4D phase space and calculate 2D forces*. The major cost in our calculation is the computation of the 2D force. To speed up the computation and improve 1D models we also investigate approximations to our exact 2D force. Preliminary results are encouraging**. As an application, we present numerical results for the LCLS bunch compressors, where recently detailed measurements of the CSR-induced energy loss and transverse emittance growth have been performed and compared with numerical calculations***.
* Phys. Rev. ST Accel. Beams 12, 080704 (2009)
** http://www.lnf.infn.it/conference/uBI10/
*** Phys. Rev. ST Accel. Beams 12, 030704 (2009)
 
 
WEP141 Development of a Stepwise Ray-Tracing Based on-Line Model at AGS lattice, multipole, closed-orbit, quadrupole 1749
 
  • F. Méot, L. A. Ahrens, K.A. Brown, J.W. Glenn, H. Huang, T. Roser, V. Schoefer, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A model of the Alternating Gradient Synchrotron is being developed based on stepwise ray-tracing numerical tools. It provides a realistic representation of the lattice, and accounts for the two helical partial Siberian snake insertions. The aim is to make this stepwise ray-tracing based model an aid for the understanding of the AGS, in matter of both beam dynamics and polarization transmission.
 
 
WEP149 Beam Measurement by a Wall Gap Monitor in ALPHA linac, electron, extraction, injection 1761
 
  • T.H. Luo, P.D. McChesney, P.E. Sokol
    IUCF, Bloomington, Indiana, USA
  • S.-Y. Lee
    IUCEEM, Bloomington, Indiana, USA
 
  In this report, we present our electron beam measurements with a wall gap monitor (WGM) in ALPHA injection and extraction beam lines. The WGM is first bench mark tested, and then installed in the ALPHA injection line to measure both the macro andμpulse of the injected beam and calibrate the beam current. By scanning the bending magnet before the WGM, and applying a demodulation signal processing scheme, we measured the tomography of the longitudinal phase space of the injected beam. We moved the WGM to extraction beam line and measured the properties of the extracted beam. By comparing the frequency spectrum of injected and extracted beam, we have confirmed the debunching performance of ALPHA.  
 
WEP187 Simulation and Optimization of Project-X Main Injector Cavity cavity, HOM, simulation, impedance 1840
 
  • L. Xiao, C.-K. Ng
    SLAC, Menlo Park, California, USA
  • J.E. Dey, I. Kourbanis, Z. Qian
    Fermilab, Batavia, USA
 
  Project-X, a proposed high intensity proton facility to support a world-leading program in neutrino and flavor physics at Fermilab, plans to use the existing FNAL recycler and main injector (MI) complex, but requires upgrading the MI RF system. Currently there are two proposed 53MHz RF cavity designs for 6GeV to 120GeV operation. One design is a straight-line quarter wave resonant cavity, and the other a tapered quarter wave resonant cavity. The electromagnetic (EM) simulations of the two cavity designs are carried out by using SLAC finite element parallel code suit ACE3P. The EM simulation results for the RF parameters and higher-order-mode (HOM) properties have shown that the tapered cavity design has better RF performance than the straight one. The tapered cavity shape will then be optimized for the final design to meet the specified performance requirements for the Project-X. Possible multipacting zones in the cavity will be identified and the use of HOM dampers investigated for the optimized design.  
 
WEP194 Measurement Techniques to Characterize Instabilities Caused by Electron Clouds electron, feedback, betatron, damping 1852
 
  • M.G. Billing, G. Dugan, M.J. Forster, R.E. Meller, M.A. Palmer, G. Ramirez, J.P. Sikora, H.A. Williams
    CLASSE, Ithaca, New York, USA
  • R. Holtzapple
    CalPoly, San Luis Obispo, California, USA
  • K.G. Sonnad
    Cornell University, Ithaca, New York, USA
 
  Funding: Work is supported by NSF (PHY-0734867) and DOE (DE-FC02-08ER41538) grants.
The study of electron cloud-related instabilities for the CESR-TA project has required the development of new measurement techniques. The dynamics of the interaction of electron clouds with trains of bunches has been undertaken employing three basic observations. Measurements of tune shifts of bunches along a train has been used extensively with the most recent observations permitting the excitation of single bunches within the train to avoid collective train motion from driving the ensemble of bunches. Another technique has been developed to detect the coherent self-excited spectrum for each of the bunches within a train. This method is particularly useful when beam conditions are near the onset of an instability. The third method was designed to study bunches within the train in conditions below the onset of unstable motion. This is accomplished by separately driving each bunch within the train for several hundred turns and then observing the damping of its coherent motion. These last two techniques have been applied to study both transverse dipole (centroid) and head-tail motion. We will report on the observation methods and give examples of typical results.
 
 
WEP196 Single-Shot Longitudinal Phase Space Measurement Diagnostics Beamline Status at the Argonne Wakefield Accelerator diagnostics, cavity, quadrupole, simulation 1858
 
  • M.M. Rihaoui, D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • W. Gai, J.G. Power
    ANL, Argonne, USA
 
  A single-shot longitudinal phase space diagnostics experiment is currently being commissioned at Argonne Wakefield Accelerator. The diagnostic beamline consists of two magnetic dipoles that bend the beam horizontally followed by an rf deflecting cavity that streaks the beam vertically. Using this configuration, the incoming longitudinal phase space can be mapped to a final (x,y) plane which can be directly measured, e.g., using a YAG screen. In this paper we discuss the limitations of such longitudinal phase space diagnostics and present some preliminary measurements.  
 
WEP201 Status of NSLS-II Booster booster, injection, extraction, septum 1864
 
  • S.M. Gurov, A. Akimov, O. Anchugov, A.M. Batrakov, E.A. Bekhtenev, O.V. Belikov, P.B. Cheblakov, V.P. Cherepanov, A.D. Chernyakin, V.G. Cheskidov, I.N. Churkin, A.N. Dubrovin, A. Erokhin, K. Gorchakov, S.E. Karnaev, G.V. Karpov, V.A. Kiselev, V.V. Kobets, V.V. Kolmogorov, V.M. Konstantinov, A.A. Korepanov, E.A. Kuper, V. Kuzminykh, E.B. Levichev, V.R. Mamkin, A.S. Medvedko, O.I. Meshkov, N. Nefedov, V.V. Neyfeld, I.N. Okunev, M. Petrichenkov, V.V. Petrov, A. Polyansky, D.N. Pureskin, A. Rakhimov, S.I. Ruvinsky, T.V. Rybitskaya, L.M. Schegolev, A.V. Semenov, D.V. Senkov, S.S. Serednyakov, S.V. Shiyankov, D.A. Shvedov, S.V. Sinyatkin, V.V. Smaluk, A.V. Sukhanov, L. Tsukanova, A.V. Utkin, K. Yaminov
    BINP SB RAS, Novosibirsk, Russia
  • J.H. DeLong, R.P. Fliller, G. Ganetis, H.-C. Hseuh, I. Pinayev, T.V. Shaftan, S.K. Sharma, O. Singh, Y. Tian, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
  • P.A.E. Elkiaer
    Danfysik A/S, Jyllinge, Denmark
 
  The National Synchrotron Light Source II is a third generation light source under construction at Brookhaven National Laboratory. The project includes a highly optimized 3 GeV electron storage ring, linac pre-injector and full-energy booster-synchrotron. Budker Institute of Nuclear Physics builds booster for NSLS-II. The booster should accelerate the electron beam continuously and reliably from minimal 170 MeV injection energy to maximal energy of 3.15 GeV and average beam current of 20 mA. The booster shall be capable of multi-bunch and single bunch operation. This paper summarizes the status of NSLS-II booster and the main designed parameters.  
 
WEP212 Development of a 325 MHz 4-Rod RFQ rfq, simulation, linac, resonance 1888
 
  • B. Koubek, U. Bartz, A. Schempp, J.S. Schmidt
    IAP, Frankfurt am Main, Germany
 
  A 4-Rod RFQ with a frequency of 325 MHz and an output energy of 3 MeV will be build as a part of the FAIR project of GSI. Design studies and model measurements on a short prototype of a 325 MHz 4-Rod RFQ model were made including simulations using CST Microwave Studio. The latest simulation results regarding the dipole field of this structure are presented in this paper.  
 
WEP228 Effect of Transverse Electron Velocities on the Longitudinal Cooling Force in the Fermilab Electron Cooler electron, antiproton, pick-up, cathode 1915
 
  • A. Khilkevich
    BSU, Minsk, Belarus
  • L.R. Prost, A.V. Shemyakin
    Fermilab, Batavia, USA
 
  Funding: FNAL is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
In Fermilab’s electron cooler, a 0.1A, 4.3MeV DC electron beam propagates through the 20 m cooling section, which is immersed in a weak longitudinal magnetic field. A proper adjustment of 200 dipole coils, installed in the cooling section for correction of the magnetic field imperfections, can create a helix-like trajectory with the wavelength of 1-10 m. The longitudinal cooling force is measured in the presence of such helices at different wavelengths and amplitudes. The results are compared with a model calculating the cooling force as a sum of collisions with small impact parameters, where the helical nature of the coherent angle is ignored, and far collisions, where the effect of the coherent motion is neglected. A qualitative agreement is found.
 
 
WEP241 Beam Dynamics Simulations and Measurements at the Project X Test Facility rfq, quadrupole, simulation, focusing 1933
 
  • E. Gianfelice-Wendt, V.E. Scarpine, R.C. Webber
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under DE-AC02-07CH11359 with the U.S. DOE
Project X, under study at Fermilab, is a multi task SRF beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. a beam chopper. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.
 
 
WEP251 Design Studies of Pre-Boosters of Different Circumference for an Electron Ion Collider at JLab booster, ion, electron, collider 1954
 
  • S. Abeyratne, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois, USA
  • S.L. Manikonda
    ANL, Argonne, USA
 
  The Medium-Energy Electron Ion Collider (MEIC) at JLab comprises a figure-8 shaped pre–booster ring as one of the main components. As it performs for both the accumulation of protons and ions it must have a circumference long enough to accommodate components such as RF cavities, cooling devices, collimation, injection and extraction. The length of the large booster ring in MEIC is suggested to be in the range 1.0-1.2km. Based on preliminary design work, the minimum viable length of the pre-booster in MEIC was identified as 200m. It is clear that the integer multiple of the length of the designed pre-booster should match with that of the large booster in MEIC. In order to cater future requirements of the EIC, the pre-booster in MEIC needs to be designed in different versions featured by different lengths. Thus, three different pre-boosters of lengths 200m, 250m and 300m are designed with various cell structures. This paper summarizes the three variants of the lattice.  
 
THOAS1 On the Importance of Symmetrizing RF Coupler Fields for Low Emittance Beams emittance, gun, quadrupole, coupling 2044
 
  • Z. Li, C. Adolphsen, A.E. Vlieks, F. Zhou
    SLAC, Menlo Park, California, USA
 
  Funding: Work was supported by DOE Contract No. DE-AC02-76SF00515 and used computing resources at NERSC supported by DOE Contract No. DE-AC02- 05CH11231.
The input power of accelerator structure is normally fed through a coupling slot(s) on the outer wall of the accelerator structure via magnetic coupling. While providing perfect matching, the coupling slots may produce non-axial-symmetric fields in the coupler cell that can induce emittance growth as the beam is accelerated in such a field. This effect is especially important for low emittance beams at low energies such as in the injector accelerators for light sources. In this paper, we present studies of multipole fields of different rf coupler designs and their effect on beam emittance for an X-band photocathode gun, being jointly designed with LLNL, and the X-band accelerator structures. We will present symmetrized rf coupler designs for these components to preserve the beam emittance.
 
slides icon Slides THOAS1 [1.512 MB]  
 
THOBS6 Thin Film Coatings for Suppressing Electron Multipacting in Particle Accelerators electron, vacuum, target, plasma 2096
 
  • P. Costa Pinto, S. Calatroni, P. Chiggiato, H. Neupert, E.N. Shaposhnikova, M. Taborelli, W. Vollenberg, C. Yin Vallgren
    CERN, Geneva, Switzerland
 
  Thin film coatings are an effective way for suppressing electron multipacting in particle accelerators. For bakeable beam pipes, the TiZrV Non Evaporable Getter (NEG) developed at CERN can provide a Secondary Electron Yield (SEY) of 1.1 after activation at 180oC (24h). The coating process was implemented in large scale to coat the long straight sections and the experimental beam pipes for the Large Hadron Collider (LHC). For non bakeable beam pipes, as those of the Super Proton Synchrotron (SPS), CERN started a campaign to develop a coating having a low SEY without need of in situ heating. Magnetron sputtered carbon thin films have shown SEY of 1 with marginal deterioration when exposed in air for months. This material is now being tested in both laboratory and accelerator environment. At CERN’s SPS, tests with electron cloud monitors attached to carbon coated chambers show no degradation of the coating after two years of operation interleaved with a total of 3 months of air exposure during shutdown periods. This paper presents the SEY characteristics of both TiZrV and carbon films, the coating processes and the proposed route towards large scale production for the carbon coatings.  
slides icon Slides THOBS6 [4.620 MB]  
 
THP016 Design of an Achromatic and Uncoupled Medical Gantry for Radiation Therapy quadrupole, optics, radiation, controls 2163
 
  • N. Tsoupas, D. Kayran, V. Litvinenko, W.W. MacKay
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We are presenting the layout and the optics of a beam line to be used as a medical gantry in radiation therapy. The optical properties of the gantry’s beam line are such as to make the beam line achromatic and uncoupled. These two properties make the beam spot size, which is delivered and focused by the gantry, on the tumor of the patient, independent of the angular orientation of the gantry. In this paper we present the layout of the magnetic elements of the gantry, and also present the theoretical basis for the optics design of such a gantry.
* N. Tsoupas et. al. “Uncoupled achromatic tilted S-bend” Presented at the 11th Biennial European Particle Accelerator Conference, Genoa, Italy, June 23-27,2008
 
 
THP025 A Cooled Generalized Multiple Target System to Create Positrons for a Compact Tunable Intense Gamma Ray Source target, positron, electron, background 2169
 
  • C. Y. Yoshikawa, C.M. Ankenbrandt
    Muons, Inc, Batavia, USA
  • A. Afanasev
    Hampton University, Hampton, Virginia, USA
  • D.V. Neuffer
    Fermilab, Batavia, USA
 
  Funding: This work was funded by Pacific Northwest National Laboratory which is operated for the U.S. Department of Energy by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.
A compact tunable gamma ray source has many potential uses in medical and industrial applications. One novel scheme to produce an intense beam of gammas relies on the ability to create a high flux of positrons, which are produced by an electron beam on a high Z target. We present an innovative system which allows for a nearly arbitrary targeting geometry that supports multiple targets, whose optimal design is allowed to be driven by the physics of the positron production processes, while naturally supporting cooling of the targets.
 
 
THP056 Near Real-time ORM Measurements and SVD Matrix Generation for 10 Hz Global Orbit Feedback In RHIC feedback, ion, damping, injection 2226
 
  • C. Liu, R.L. Hulsart, W.W. MacKay, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To reduce the effect of trajectory perturbations due to vibrations of the final focusing quadrupoles at RHIC, global orbit feedback was successfully prototyped during run-10. The system was tested using transfer functions between the beam position monitors and correctors obtained from the online optical model and a correction algorithm based on singular value decomposition (SVD). In run-11 we plan to self-calibrate the system using SVD matrices derived from orbit response matrix (ORM) measurements acquired real-time using the new FPGA-based signal processing. Comparisons between measurement and model and of feedback performance with the two methods are presented.
 
 
THP061 Mimicking Bipolar Sextupole Power Supplies for Low-energy Operations at RHIC sextupole, ion, luminosity, background 2241
 
  • C. Montag, D. Bruno, A.K. Jain, G. Robert-Demolaize, T. Satogata, S. Tepikian
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
RHIC operated at energies below the nominal ion injection energy of E=9.8 GeV/u in 2010. Earlier test runs and magnet measurements indicated that all defocusing sextupole unipolar power supplies should be reversed to provide the proper sign of chromaticity. However, vertical chromaticity at E=3.85 GeV/u with this power supply configuration was still not optimal. This uncertainty inspired a new machine configuration where only half of the defocusing sextupole power supplies were reversed, taking advantage of the flexibility of the RHIC nonlinear chromaticity correction system to mimic bipolar sextupoles. This configuration resulted in a 30 percent luminosity gain and eliminated the need for further polarity changes for later 2010 low energy physics operations. Here we describe the background to this problem, operational experience, and RHIC online model changes to implement this solution.
 
 
THP064 The Dipole Corrector Magnets for the RHIC Fast Global Orbit Feedback System feedback, vacuum, quadrupole, interaction-region 2249
 
  • P. Thieberger, L. Arnold, C. Folz, R.L. Hulsart, A.K. Jain, R. Karl, G.J. Mahler, W. Meng, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, V. Ptitsyn, J. Ritter, L. Smart, J.E. Tuozzolo, J. White
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The recently completed RHIC fast global orbit feedback system uses 24 small “window-frame” horizontal dipole correctors. Space limitations dictated a very compact design. The magnetic design and modelling of these laminated yoke magnets is described as well as the mechanical implementation, coil winding, vacuum impregnation, etc. Test procedures to determine the field quality and frequency response are described. The results of these measurements are presented and discussed. A small fringe field from each magnet, overlapping the opposite RHIC ring, is compensated by a correction winding placed on the opposite ring’s magnet and connected in series with the main winding of the first one. Results from measurements of this compensation scheme are shown and discussed.
 
 
THP072 Compensation of Detector Solenoid in SUPER-B solenoid, quadrupole, coupling, betatron 2267
 
  • Y. Nosochkov, K.J. Bertsche, M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the Department of Energy Contract DE-AC02-76SF00515.
The SUPER-B detector solenoid has a strong 1.5 T field in the Interaction Region (IR) area, and its tails extend over the range of several meters. The main effect of the solenoid field is the coupling of the horizontal and vertical betatron motion which needs to be corrected in order to preserve the small design beam size at the Interaction Point. The additional complications are that: a) due to the crossing angle the solenoid is not parallel to either of the two beams, thus leading to orbit and dispersion perturbations; b) the solenoid overlaps the innermost IR permanent quadrupoles, which will cause additional coupling effects. The proposed correction system provides local compensation of the solenoid effects independently for each side of the IR. It includes “bucking” solenoids to remove the unwanted long solenoid field tails and a set of skew quadrupoles, dipole correctors and anti-solenoids to cancel all linear perturbations to the optics. The details of the correction system design are presented.
 
 
THP077 SC Quadrupole for Cryomodule for ERL/ILC quadrupole, cryomodule, focusing, linac 2276
 
  • A.A. Mikhailichenko
    CLASSE, Ithaca, New York, USA
 
  Funding: NSF
We are considering the SC quadrupole where the field formed not only by the current distributions, but with the poles also. This delivers a good quality field in all aperture allowing compact and inexpensive design. This type of quadrupole designed for Cornell ERL could be recommended for ILC also.
 
 
THP083 Fabrication and Design of the Main Linacs for CLIC with Damped and Detuned Wakefield Suppression and Optimised Surface Electromagnetic Fields wakefield, linac, HOM, damping 2291
 
  • R.M. Jones, A. D'Elia, V.F. Khan
    UMAN, Manchester, United Kingdom
  • A. Grudiev, G. Riddone, W. Wuensch
    CERN, Geneva, Switzerland
 
  Funding: Research leading to these results has received funding from the European commission under the FP7 research infrastructure grant no. 227579.
We report on the suppression of long-range wakefields in the main linacs of the CLIC collider. This structure operates with a 120 degree phase advance per cell. The wakefield is damped using a combination of detuning the frequencies of beam-excited higher order modes and by light damping, through slot-coupled manifolds. This serves as an alternative to the present baseline CLIC design which relies on heavy damping. Detailed simulations of both the optimised surface fields resulting from the monopole mode, and from wakefield damping of the dipole modes, are discussed. We report on fabrication details of a structure consisting of 24 cells, diffusion bonded together. This design, known as CLICDDSA, takes into practical mechanical engineering issues and is the result of several optimisations since the earlier CLICDDS designs. This structure is due to be tested for its capacity to sustain high gradients at CERN.
 
 
THP085 Radiation Effects in a Muon Collider Ring and Dipole Magnet Protection quadrupole, collider, radiation, lattice 2294
 
  • N.V. Mokhov, V. Kashikhin, I. Novitski, A.V. Zlobin
    Fermilab, Batavia, USA
 
  Funding: Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Requirements and operating conditions for a Muon Collider Ring (MCR) pose significant challenges to superconducting magnets. The dipole magnets should provide a high magnetic field to reduce the ring circumference and thus maximize the number of muon collisions during their lifetime. One third of the beam energy is continuously deposited along the lattice by the decay electrons at the rate of 0.5 kW/m for a 1.5-TeV c.o.m. MCR. Unlike dipoles in proton machines, the MCR dipoles should allow this dynamic heat load to escape the magnet helium volume in horizontal plane predominantly towards the ring center. Two alternative designs, one based on the open mid-plane approach with block type coils and absorber outside the coils, and another based on the traditional large-aperture cos-theta approach with a shifted beam pipe and absorber inside the coil aperture were developed for the MCR designed for a luminosity of 1034 cm-2s−1. This paper presents the analysis and comparison of radiation effects in MCR based on the two dipole magnets. Tungsten masks in the interconnect regions are used in both cases to mitigate the unprecedented dynamic heat deposition and radiation in the magnet coils.
 
 
THP120 Light Sources Optimized with Super Bends storage-ring, emittance, photon, brightness 2342
 
  • L. Emery
    ANL, Argonne, USA
  • C. Steier
    LBNL, Berkeley, California, USA
 
  Funding: Work at Argonne was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract No. DE-AC02-06CH11357
In the past small storage rings with dipole-magnet-only sources were called second-generation light sources (before insertion devices (IDs) were used). With today's technology, e.g. superconducting dipole magnet of 5 T (e.g., ALS's Superbend *), one could make a smaller ring (say, 60-m circumference) with substantial brightness for dipole-magnet beams. Without IDs, these optimized sources would be designated as between second and third generation. Such rings don't exist yet, but their concept can be compared with other types of compact light sources. Typical parameters of such ring would be 60-m circumference, 2 GeV, several 5-T dipole sources in TME-like cells, and 4x1013 photons/s/0.1% BW at 1 Angstrom. The number of beamlines is variable, but potentially very large, only limited by funding.
* D. Robin et al., NIM A 538, 1-3, (2005), 65-92.
 
 
THP129 Emittance Reduction Approaches for NSLS-II emittance, damping, lattice, wiggler 2363
 
  • W. Guo, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
NSLS-II is a third generation light source that is under construction at the Brookhaven National Laboartory. The 3GeV 792m long 30-cell storage ring will be commissioned in 2014. The emittance is lowered from 2nm to 1nm by three 7m damping wigglers. This paper will discuss the future emittance reduction approaches for NSLS-II. One option is installing more damping wigglers; an alternative solution is to manipulate the damping partition by shifting the chromatic quadrupoles horizontally. Both methods can lower the emittance effectively; however, the second method does not occupy the user straights. When the quarupoles are moved, the orbit and thus the vacuum chamber need to be redesigned, and beam dynamics could be affected. In the paper we will compare the lattice properties for the two options, and address the potential issues.
 
 
THP193 Study of Single and Coupled-Bunch Instabilities for NSLS-II simulation, wakefield, cavity, damping 2483
 
  • G. Bassi, A. Blednykh
    BNL, Upton, New York, USA
 
  We study single and coupled-bunch instabilities for the NSLS-II storage ring with a recently developed parallel tracking code. For accurate modelling of the coupled-bunch instability, we investigate improvements to current point-bunch models to take into account finite bunch-size effects.  
 
FROBS6 High Current SRF Cavity Design for SPL and eRHIC cavity, HOM, damping, electron 2589
 
  • W. Xu, I. Ben-Zvi, R. Calaga, H. Hahn, E.C. Johnson, J. Kewisch
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
In order to meet the requirements of high average current accelerators, such as the Superconducting Proton Linac (SPL) at CERN and the electron–ion collider (eRHIC) at BNL, a high current 5-cell SRF cavity, called BNL3 cavity, was designed. The optimization process aimed at maximizing the R/Q of the fundamental mode and the geometry factor G under an acceptable RF field level of Bpeak/Eacc or Epeak/Eacc. In addition, a pivotal consideration for the high current accelerators is efficient damping of dangerous higher-order modes (HOM) to avoid inducing emittance degradation, cryogenic loading or beam-breakup (BBU). To transport the HOMs out of the cavity, the BNL3 cavity employs a larger beam pipe, allowing the propagation of HOMs but not the fundamental mode. Moreover, concerning the BBU effect, the BNL3 cavity is aimed at low (R/Q)Qext for dangerous modes, including dipole modes and quadrupole modes. This paper presents the design of the BNL3 cavity, including the optimization for the fundamental mode, and the BBU limitation for dipole and quadrupole modes. The BBU simulation results show that the designed cavity is qualified for high-current, multi-pass machines such as eRHIC.
 
slides icon Slides FROBS6 [2.577 MB]