

Spin Manipulating Polarized Deuterons*

V.S. Morozov^{1,2}, A.W. Chao^{2,†}, A.D. Krisch², M.A. Leonova², R.S. Raymond², D.W. Sivers², V.K. Wong²; F. Hinterberger³; A.M. Kondratenko⁴; E.J. Stephenson⁵

¹ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA
 ² Spin Physics Center, University of Michigan, Ann Arbor, MI 48109-1040, USA
 ³ Helmholtz-Institut f
ür Strahlen- und Kernphysik, Universit
ät Bonn, D-53115 Bonn, Germany
 ⁴ GOO Zaryad, Russkaya St. 41, Novosibirsk, 630058 Russia
 ⁵ IUCF, Indiana University, Bloomington, IN 47408-0768, USA

^{*} This research was supported by grants from the German BMBF Science Ministry and its FFE program at COSY. [†] also at SLAC, 2575 Sand Hill Rd., Menlo Park, CA 94025.

PAC'11, New York, NY, March 29, 2011

Outline

- Motivation
- Experimental apparatus at Forschungszentrum Jülich
- Manipulation of deuteron vector and tensor polarizations
- Chao's matrix formalism for describing spin dynamics
- Kondratenko Crossing to overcome depolarizing resonances
- Possible improvement of Kondratenko Crossing
- Summary

Motivation

- Manipulation of deuteron vector and tensor polarizations:
 - precise control over deuteron polarizations ⇒
 reduce systematic errors in polarized scattering experiments
- Chao's matrix formalism for describing spin dynamics:
 - analytic calculation of polarization at any time during piecewise-linear spin resonance crossing
- Kondratenko Crossing to overcome depolarizing resonances:
 - better preserve polarization when going through spin resonance even with moderate crossing rate
- Possible improvement of Kondratenko Crossing:
 - easier practical implementation,
 - possibly less sensitive to beam's momentum spread

COSY COoler SYnchrotron

- Deuterons: 1.85 GeV/c
- D⁻ source cycled through 5 spin states
- LE Polarimeter monitored injected polarization
- e-Cooler reduced momentum spread at injection
- RF Dipole or RF Solenoid
- EDDA detector as polarimeter

Ferrite RF Dipole

- Ceramic vacuum pipe
- $\int B_{rms} \cdot dl = 0.54 \text{ T} \cdot \text{mm}$ at ~917 kHz

RF Solenoid

- Ceramic vacuum pipe
- $\int B_{rms} \cdot dl = 0.67 \text{ T} \cdot \text{mm}$ at ~917 kHz

EDDA Detector

- C or CH₂ fiber target
- Two cylindrical double layers
 - Outer double layer: 32 scintillator slabs ($\Delta \phi$ = 11.25°),

 2×29 scintillator half-rings ($\Delta \theta_{lab} = 2.5^{\circ}$)

- Inner double layer: 640 scintillating fibers
- Fast deuteron polarimeter
 - Inclusive scaler counts in Left, Right, Top & Bottom quadrants

Spin-1 Beam Polarization

- Deuteron's gyromagnetic anomaly G_d = -0.142 987 (~12.5 x smaller than proton's)
- Three possible spin components along vertical axis: |+1>, |0> & |-1>
- Vector polarization

$$\mathbf{P}_{\mathbf{V}} = rac{\mathbf{N}_{+} - \mathbf{N}_{-}}{\mathbf{N}_{+} + \mathbf{N}_{0} + \mathbf{N}_{-}}$$

Tensor polarization

$$P_{T} = 1 - 3 \frac{N_{0}}{N_{+} + N_{0} + N_{-}}$$

N₊, N₀ & N₂ = number of particles in $|+1\rangle$, $|0\rangle$ & $|-1\rangle$ states.

Spin Motion and Spin Flipping

- Unperturbed spin motion
 - precession about vertical axis with frequency $v_s = G\gamma \equiv spin$ tune
- RF magnet can create spin resonance centered at

$$\mathbf{f}_{r}=\mathbf{f}_{c}\left(\mathbf{n}\pm\mathbf{v}_{s}\right)$$

 $f_c \equiv$ beam's circulation frequency

- Sweeping rf magnet's frequency through $f_r \implies flip P_V$ direction
- Froissart-Stora equation gives final polarization

$$\mathbf{P}_{V} = \mathbf{P}_{V}^{i} \left\{ 2 \exp \left[\frac{(\pi |\boldsymbol{\mathcal{E}}| f_{c})^{2}}{\Delta f / \Delta t} \right] - 1 \right\}$$

 \mathcal{E} = resonance strength

 Δf = frequency ramp range

 Δt = ramp time

• Spin-flip efficiency $\eta \equiv -P_v / P_v^i$

Rotating Deuteron Polarization

- Sweeping rf magnet's frequency through f_r
 - rotates polarization by an angle θ .
 - vector and tensor polarizations transform as

$$P_V(\theta) = P_V^i \cos \theta, \qquad P_T(\theta) = P_T^i [\frac{3}{2} \cos^2 \theta - \frac{1}{2}]$$

– modified Froissart-Stora formula for P_v

$$\frac{\mathsf{P}_{\mathsf{V}}}{\mathsf{P}_{\mathsf{V}}^{\mathsf{i}}} = (1+\hat{\eta}) \exp\left[\frac{(\pi |\boldsymbol{\mathcal{E}}| \mathbf{f}_{\mathsf{c}})^2}{\Delta f / \Delta t}\right] - \hat{\eta}$$

– formula for P_T

$$\frac{\mathsf{P}_{\mathsf{T}}}{\mathsf{P}_{\mathsf{T}}^{\mathsf{i}}} = \frac{3}{2} \left(\frac{\mathsf{P}_{\mathsf{V}}}{\mathsf{P}_{\mathsf{V}}^{\mathsf{i}}} \right)^2 - \frac{1}{2} = \frac{3}{2} \left\{ (1+\hat{\eta}) \exp\left[\frac{(\pi \mid \boldsymbol{\mathcal{E}} \mid f_{\mathsf{c}})^2}{\Delta f \mid \Delta t} \right] - \hat{\eta} \right\}^2 - \frac{1}{2}$$

 $\hat{\eta}\equiv$ limiting spin-flip efficiency

Resonance Map at Fixed Frequency (Dec 03)

V.S. Morozov et al., Phys. Rev. ST-AB 8, 061001 (2005)

Measured Resonance Frequency and Width

 $f_v = 916.9622 \pm 0.0003 \text{ kHz} \\ \omega_v = 40.8 \pm 0.8 \text{ Hz}$

$$\label{eq:f_t} \begin{split} f_{\scriptscriptstyle T} &= 916.961 \pm 0.003 \ \text{ kHz} \\ \omega_{\scriptscriptstyle T} &= 39 \pm 7 \ \text{ Hz} \end{split}$$

Varying Ramp Time (Dec 03)

V.S. Morozov et al., Phys. Rev. ST-AB 8, 061001 (2005)

Measured Resonance Strength

$$\hat{\eta}_{v} = 100 \pm 2\%$$

 $\boldsymbol{\mathcal{E}}_{v} = (1.17 \pm 0.01) \times 10^{-6}$

$$\hat{\eta}_{T} = 100 \pm 2\%$$

 $\mathcal{E}_{T} = (1.14 \pm 0.02) \times 10^{-6}$

Varying Frequency Range (Dec 03)

V.S. Morozov et al., Phys. Rev. ST-AB 8, 061001 (2005)

Multiple Spin Flipping (Dec 03)

V.S. Morozov et al., Phys. Rev. ST-AB 8, 061001 (2005)

Jefferson Lab

Chao Matrix Formalism

A.W. Chao, Phys. Rev. ST-AB 8, 104001 (2005)

- Particle's spin state described by two-component complex spinor Ψ
- Spinor equation of motion near single spin resonance

$$\frac{\mathrm{d}\Psi}{\mathrm{d}\theta} = -\frac{\mathrm{i}}{2} \begin{bmatrix} -\mathrm{G}\gamma(\theta) & \mathcal{E} \, \mathrm{e}^{\mathrm{i}\nu_{\mathrm{r}}\theta} \\ \mathcal{E}^{*}\mathrm{e}^{-\mathrm{i}\nu_{\mathrm{r}}\theta} & \mathrm{G}\gamma(\theta) \end{bmatrix} \Psi$$

 $\theta = 2\pi f_c t$ = time variable

 v_r = the spin resonance tune

- Equation solved analytically for
 - constant distance between Gy and v_r
 - linearly changing distance between Gy and v_r
- Spinor evolution described by time-dependent matrix
- Matrices multiplied sequentially for piece-wise linear crossing pattern
- Resulting matrix determines final spinor state and polarization

Chao Test Schematic (May 07)

V.S. Morozov et al., Phys. Rev. Lett. 100, 054801 (2008)

Chao Test with Partially Cooled Beam (May 07)

V.S. Morozov et al., Phys. Rev. Lett. 100, 054801 (2008)

Chao Test with Fully Cooled Beam (May 07)

V.S. Morozov et al., Phys. Rev. Lett. 100, 054801 (2008)

Chao Test with Fully Cooled Beam (May 07)

V.S. Morozov *et al.*, Phys. Rev. Lett. 100, 054801 (2008)

Green line: original prediction from V.S. Morozov et al., PRST-AB 10, 041001 (2007)

Application to Kondratenko Crossing

Kondratenko Crossing (KC) and Fast Crossing (FC) Shapes

Shape defined by Δt_{slow} , Δf_{slow} , Δt_{fast} , Δf_{fast} , and $[df/dt]_{fast}$ / $[df/dt]_{link}$ ratio

1.85 GeV/c Deuterons at COSY (May 08)

V.S. Morozov et al., Phys. Rev. Lett. 102, 244801 (2009)

Fit to Froissart-Stora formula $\Rightarrow \mathcal{E} = (1.067 \pm 0.003) \ 10^{-5}$

KC & FC by Varying f_{KC} (May 08)

V.S. Morozov et al., Phys. Rev. Lett. 102, 244801 (2009)

- $f_r \equiv$ spin resonance center frequency, $f_{KC} \equiv KC$ shape center frequency
- Parameters at COSY:

 \mathcal{E} = 1.067 10⁻⁵, Δf_{slow} = 400 Hz, Δt_{slow} = 160 ms, Δf_{fast} = 185 Hz, Δt_{fast} = 12 ms

• KC fit using Chao formalism \Rightarrow fr = 916 999.1 \pm 0.1 Hz, δ f = 24.4 \pm 0.2 Hz fwhm

KC & FC by Varying f_{KC} (May 08)

V.S. Morozov et al., Phys. Rev. Lett. 102, 244801 (2009)

- $f_r \equiv$ spin resonance center frequency, $f_{KC} \equiv$ KC shape center frequency
- Parameters at COSY:

 \mathcal{E} = 1.067 10⁻⁵, Δf_{slow} = 400 Hz, Δt_{slow} = 160 ms, Δf_{fast} = 185 Hz, Δt_{fast} = 12 ms

• KC fit using Chao formalism \Rightarrow fr = 916 999.1 \pm 0.1 Hz, δ f = 24.4 \pm 0.2 Hz fwhm

KC & FC by Varying $\Delta f_{fast} \& \Delta t_{fast}$ (May 08)

V.S. Morozov et al., Phys. Rev. Lett. 102, 244801 (2009)

 \mathcal{E} = 1.067 10⁻⁵, f_r = 916 999.1 ± 0.1 Hz, δf = 24.4 ± 0.2 Hz fwhm

KC & FC by Varying $\Delta t_{slow} \& \Delta f_{slow}$ (May 08)

V.S. Morozov et al., Phys. Rev. Lett. 102, 244801 (2009)

 \mathcal{E} = 1.067 10⁻⁵, f_r = 916 999.1 ± 0.1 Hz, δf = 24.4 ± 0.2 Hz fwhm

Depolarization Summary at KC Peak (May 08)

V.S. Morozov et al., Phys. Rev. Lett. 102, 244801 (2009)

Depolarization Summary at KC Peak (May 08)

V.S. Morozov et al., Phys. Rev. Lett. 102, 244801 (2009)

KC & FC Sensitivity to ε & [f_r – f_{KC}]

Kondratenko Triple Crossing

- $\nu \equiv G\gamma$ ν_r , $\nu_r \equiv m$ or $m \pm \nu_y$
- Requirements:
 - Spin rotation about vertical axis between crossings $\Psi_{\alpha\beta} = \Psi_{\beta\gamma} = 2\pi m$
 - Spin rotation about horizontal axis

Summary

- Demonstrated 98 \pm 1% vector and tensor spin-flip efficiency
- Observed and explained tensor polarization's behavior:
 - transformation of tensor component under rotation
- Experimentally demonstrated Chao formalism's validity:
 - excellent agreement of observed polarization oscillations with Chao formalism prediction
- Successfully tested KC concept:
 - ~ 4.7 x reduction in depolarization with unbunched beam
 - ~ 14-31 x reduction in depolarization with bunched beam
- Possible improvement of KC with triple resonance crossing
 - reduced sensitivity to beam's momentum spread
 - applicable to preserving polarization as well as spin flip

