Keyword: HOM
Paper Title Other Keywords Page
MOP041 17 GHz Overmoded Dielectric Photonic Bandgap Accelerator Cavity cavity, lattice, simulation, vacuum 175
 
  • A.M. Cook, B.J. Munroe, M.A. Shapiro, R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
 
  Funding: This research is supported by the U.S. Department of Energy, Office of High Energy Physics.
We present the design of an overmoded photonic band gap (PBG) accelerator cavity, made from a 2D lattice of sapphire rods supported between copper plates, that operates in a TM02-like mode at 17 GHz. The cavity does not support the lower-frequency TM01-like mode. Higher-order modes are damped effectively by removing rods from the lattice so that only the operating mode is supported with a high quality factor. The TM02 cavity mitigates the high pulsed heating of the copper surface seen in some metal-rod TM01 PBG cavities, which may be an advantage for high-gradient operation. We discuss plans for testing a 17 GHz TM02 standing-wave cavity at gradients above 100 MV/m.
 
 
MOP042 Design of a Superconducting Photonic Band Gap Structure Cell SRF, cavity, niobium, wakefield 178
 
  • E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
  • C.H. Boulware, T.L. Grimm
    Niowave, Inc., Lansing, Michigan, USA
 
  Funding: This work is supported by the U.S. Department of Energy (DOE) Office of Science Early Career Research Program.
We present a design of a superconducting photonic band gap (PBG) accelerator cell operating at 700 MHz. It has been long recognized that PBG structures have great potential in reducing long-range wakefields in accelerators. Using PBG structures in superconducting particle accelerators will allow moving forward to significantly higher beam luminosities and lead towards a completely new generation of colliders for high energy physics. We designed the superconducting PBG cell which incorporates higher order mode (HOM) couplers to conduct the HOMs filtered by the PBG structure out of the cryostat. The accelerator characteristics of the cell were evaluated numerically. A scaled prototype cell was fabricated out of copper at the higher frequency of 2.8 GHz and cold-tested. The 700 MHz niobium cell will be fabricated at Niowave, Inc. and tested for high gradient at Los Alamos in the near future.
 
 
MOP267 Fast BPM Data Distribution for Global Orbit Feedback Using Commercial Gigabit Ethernet Technology feedback, monitoring, status, collider 606
 
  • R.L. Hulsart, P. Cerniglia, R.J. Michnoff, M.G. Minty
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In order to correct beam perturbations in RHIC around 10Hz, a new fast data distribution network was required to deliver BPM position data at rates several orders of magnitude above the capability of the existing system. The urgency of the project limited the amount of custom hardware that could be developed, which dictated the use of as much commercially available equipment as possible. The selected architecture uses a custom hardware interface to the existing RHIC BPM electronics together with commercially available Gigabit Ethernet switches to distribute position data to devices located around the collider ring. Using the minimum Ethernet packet size and a field programmable gate array (FPGA) based state machine logic instead of a software based driver, real-time and deterministic data delivery is possible using Ethernet. The method of adapting this protocol for low latency data delivery, bench testing of Ethernet hardware, and the logic to construct Ethernet packets using FPGA hardware will be discussed.
 
 
MOP281 ADC Clocking Formats and Matching Networks coupling, impedance, power-supply 639
 
  • A.J. Della Penna
    BNL, Upton, Long Island, New York, USA
 
  Clocking an ADC is the most critical point when resolution is a major concern. Any fluctuations on the input clock performance correlates to jitter. The many different formats used to clock ADCs on the market makes choosing the appropriate one no easy task. LVDS, PECL, LVPECL, CMOS and CML are just some of the different types. With each type a certain matching network will be required. This paper will discuss the advantages of each format as well as its associated matching network.  
 
TUP042 RF Measurements and Numerical Simulations for the Model of the Bilbao Linac Double Spoke Cavity cavity, simulation, ion, controls 886
 
  • J.L. Munoz, I. Bustinduy, N. Garmendia, V. Toyos
    ESS Bilbao, Bilbao, Spain
  • E. Asua
    UPV-EHU, Leioa, Spain
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
  • V. Etxebarria, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • J. Feuchtwanger
    ESS-Bilbao, Zamudio, Spain
  • J. Lucas
    Elytt Energy, Madrid, Spain
 
  A model of a double spoke resonant cavity (operating frequency 352.2 MHz, βg=0.39) has been designed and fabricated in aluminium. The RF characteristics of the cavity have been measured in our laboratory. Experimental measurements have involved the determination of the main cavity parameters, and the characterization of the accelerating electric field profile along the cavity axis by means of a fully automated bead-pullmethod. Additionally, numerical simulations using COMSOL code have been used to fully characterize the cavity. Electromagnetic numerical simulations of the cavity have been also performed to determine its main figures of merit and to identify the most suitable position for opening a port to install a power coupler. In this paper we report the cavity cold model description, the experimental setup and corresponding techniques, together with the numerical methods. The obtained results are described and discussed in detail.  
 
TUP052 HOM Damping Properties of Fundamental Power Couplers in the Superconducting Electron Gun of the Energy Recovery LINAC at Brookhaven National Laboratory cavity, damping, gun, simulation 901
 
  • L.R. Hammons, H. Hahn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Among the accelerator projects under construction at the Relativistic Heavy Ion Collider (RHIC) is an R&D energy recovery LINAC (ERL) test facility. The ERL includes both a five-cell superconducting cavity as well as a superconducting, photoinjector electron gun. Because of the high-charge and high-current demands, effective higher-order mode (HOM) damping is essential, and several strategies are being pursued. Among these is the use of the fundamental power couplers as a means for damping some HOMs. Simulation studies have shown that the power couplers can play a substantial role in damping certain HOMs, and this presentation will discuss these studies along with measurements.
 
 
TUP053 Ferrite HOM Load Surrounding a Ceramic Break damping, gun, dipole, cavity 904
 
  • L.R. Hammons, H. Hahn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Several future accelerator projects at the Relativistic Heavy Ion Collider are being developed using a super-conducting electron energy recovery LINAC along with a superconducting electron gun as the source. All of the projects involve high-current, high-charge operation and require effective higher-order mode (HOM) damping to achieve the performance objectives. Among the HOM designs being developed is a waveguide-type HOM load for the electron gun consisting of a ceramic break surrounded by ferrite tiles. This design is innovative in its approach and achieves a variety of ends including broadband HOM damping and protection of the superconducting cavity from potential damage to the ferrite tiles. Furthermore, the ceramic is an effective thermal transition. This design may be useful in various applications since it readily allows for replacement of the ferrite tiles with other materials and may also be useful for testing the absorbing properties of these materials. In this paper, the details of the design will be discussed along with current modelling and testing results as well as future plans.
 
 
TUP055 Design and Preliminary Test of the 1500 MHz NSLS-II Passive Superconducting RF Cavity cavity, cryomodule, vacuum, niobium 910
 
  • J. Rose, W.K. Gash, B.N. Kosciuk, V. Ravindranath, S.K. Sharma, R. Sikora, N.A. Towne
    BNL, Upton, Long Island, New York, USA
  • C.H. Boulware, T.L. Grimm, C. Krizmanich, B. Kuhlman, N. Miller, B. Siegel, M.J. Winowski
    Niowave, Inc., Lansing, Michigan, USA
 
  NSLS-II is a new ultra-bright 3 GeV 3rd generation synchrotron radiation light source. The performance goals require operation with a beam current of 500mA and a bunch current of at least 0.5mA. Ion clearing gaps are required to suppress ion effects on the beam. The natural bunch length of 3mm is planned to be lengthened by means of a third harmonic cavity in order to increase the Touschek limited lifetime. Earlier work described the design alternatives and the geometry selected for a copper prototype. We subsequently have iterated the design to lower the R/Q of the cavity and to increase the diameter of the beam pipe ferrite HOM dampers to reduce the wakefield heating. A niobium cavity and full cryomodule including LN2 shield, magnetic shield and insulating vacuum vessel have been fabricated and installed.  
 
TUP060 New HOM Coupler Design for High Current SRF Cavity cavity, higher-order-mode, linac, coupling 925
 
  • W. Xu, S.A. Belomestnykh, I. Ben-Zvi, H. Hahn, E.C. Johnson
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Damping higher order modes (HOMs) significantly to avoid beam instability is a challenge for the high current Energy Recovery Linac-based eRHIC at BNL. To avoid the overheating effect and high tuning sensitivity, current, a new band-stop HOM coupler is being designed at BNL. The new HOM coupler has a bandwidth of tens of MHz to reject the fundamental mode, which will avoid overheating due to fundamental frequency shifting because of cooling down. In addition, the S21 parameter of the band-pass filter is nearly flat from first higher order mode to 5 times the fundamental frequency. The simulation results showed that the new couplers effectively damp HOMs for the eRHIC cavity with enlarged beam tube diameter and two 120° HOM couplers at each side of cavity. This paper presents the design of HOM coupler, HOM damping capacity for eRHIC cavity and prototype test results.
 
 
TUP063 HOM Measurements with Beam at the Cornell Injector Cryomodule simulation, laser, cryomodule, pick-up 934
 
  • S. Posen, M. Liepe
    CLASSE, Ithaca, New York, USA
 
  Funding: NSF
The Cornell ERL injector prototype is undergoing commissioning and testing for running unprecedented currents in an electron cw injector. This paper discusses preliminary measurements of HOMs in the injector prototype’s superconducting RF cryomodule. These include HOM spectra up to 30 GHz measured via small antennae located at the HOM beam line absorbers between the SRF cavities. The spectra are compared at different beam currents and repetition rates. The shape of the spectra are compared to ABCI simulations of the loss factor spectrum of the cryomodule beam line. The total HOM power dissipated in the HOM loads was also measured with beam on, which allowed for an estimate of the loss factor. This measurement was accomplished via temperature sensors on the loads, calibrated to input power by heaters on the loads.
 
 
TUP064 Designing Multiple Cavity Classes for the Main Linac of Cornell's ERL cavity, linac, dipole, higher-order-mode 937
 
  • N.R.A. Valles, M. Liepe
    CLASSE, Ithaca, New York, USA
 
  Funding: Work supported by NSF Grant No. PHY-0131508, and NSF/NIH-NIGMS Grant No. DMR-0937466
Cornell is currently developing a high current Energy Recovery Linac. The baseline 7-cell cavity design for the main linac has already been completed, and prototyping has begun, as of Fall 2010. Previous work showed that increasing the relative cavity-to-cavity frequency spread increases the beam break-up current through the linac. Simulations show that expected machining variations will introduce a relative HOM frequency spread of 0.5·10-3, corresponding to 150 mA of threshold current. The key idea of this work is to increase the relative cavity-to-cavity frequency spread by designing several classes of 7-cell cavities obtained by making small changes to the baseline center cell shape. This allows a threshold current in excess of 450 mA, which is well above the 100 mA goal for the Cornell Energy Recovery Linac.
 
 
TUP069 Status of the Mechanical Design of the 650 MHz Cavities for Project X cavity, linac, simulation, status 943
 
  • S. Barbanotti, M.S. Champion, M.H. Foley, C.M. Ginsburg, I.G. Gonin, C.J. Grimm, T.J. Peterson, L. Ristori, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  In the high-energy section of the Project X Linac, acceleration of H- ions takes place in superconducting cavities operating at 650 MHz. Two families of five-cell elliptical cavities are planned: β = 0.61 and β = 0.9. A specific feature of the Project X Linac is low beam loading, and thus, low bandwidth and higher sensitivity to microphonics. Efforts to optimize the mechanical design of the cavities to improve their mechanical stability in response to the helium bath pressure fluctuations will be presented. These efforts take into account constraints such as cost and ease of fabrication. Also discussed will be the overall design status of the cavities and their helium jackets.  
 
TUP074 Experiments on HOM Spectrum Manipulation in a 1.3 GHz ILC SC Cavity cavity, linac, resonance, emittance 958
 
  • T.N. Khabiboulline, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Superconducting cavities with high operating Q will be installed in the Project-X, a superconducting linac, which is under development at Fermilab. Possibility of cavity design without HOM couplers considered. Rich spectrum of the beam and large number of cavities in ProjectX linac can result to resonance excitation of some high order modes with high shunt impedance. Under scope of study of High Order Modes (HOM) damping the manipulation with HOM spectrum in cold linac is considered. Results of detuning HOM spectrum of 1.3 GHz cavities at 2K in Horizontal Test Station of Fermilab are presented. Possible explanation of the phenomena is discussed.  
 
TUP088 Resonance Effects of Longitudinal HOMs in Project X Linac cavity, linac, resonance, kaon 991
 
  • V.P. Yakovlev, I.G. Gonin, T.N. Khabiboulline, A. Lunin, N. Solyak, A.I. Sukhanov, A. Vostrikov
    Fermilab, Batavia, USA
  • A. Saini
    University of Delhi, Delhi, India
 
  High-order mode influence on the beam longitudinal and transverse dynamics is considered for the 650 MHz section of the Project X linac. RF losses caused by HOMs are analyzed. Necessity of HOM dampers in the SC cavities of the linac is discussed.  
 
TUP089 Concept EM Design of the 650 MHz Cavities for the Project X cavity, linac, cryomodule, resonance 994
 
  • V.P. Yakovlev, M.S. Champion, I.G. Gonin, T.N. Khabiboulline, A. Lunin, N. Solyak
    Fermilab, Batavia, USA
  • A. Saini
    University of Delhi, Delhi, India
 
  Concept of the 650 MHz cavities for the Project X is presented. Choice of the basic parameters, i.e, number of cells, geometrical β, apertures, coupling coefficients, etc, is discussed. The cavities optimization criteria are formulated. Results of the RF design are presented for the cavities of both low-energy and high energy sections.  
 
TUP096 Beam Pipe HOM Absorber for SRF Cavities insertion, cavity, SRF, simulation 1012
 
  • R. Sah, A. Dudas, M.L. Neubauer
    Muons, Inc, Batavia, USA
  • G.H. Hoffstaetter, M. Liepe, H. Padamsee, V.D. Shemelin
    CLASSE, Ithaca, New York, USA
  • K. Ko, C.-K. Ng, L. Xiao
    SLAC, Menlo Park, California, USA
 
  Funding: Supported in part by DOE SBIR grant DE-SC0002733 and USDOE Contract No. DE-AC05-84-ER-40150.
Superconducting RF (SRF) systems typically contain resonances at unwanted frequencies, or higher order modes (HOM). For storage ring and linac applications, these higher modes must be damped by absorbing them in ferrite and other lossy ceramic materials. Typically, these absorbers are brazed to substrates that are often located in the drift tubes adjacent to the SRF cavity. These HOM absorbers must have broadband microwave loss characteristics and must be thermally and mechanically robust, but the ferrites and their attachments are weak under tensile and thermal stresses and tend to crack. Based on prior work on HOM loads for high current storage rings and for an ERL injector cryomodule, a HOM absorber with improved materials and design is being developed for high-gradient SRF systems. This work will use novel construction techniques (without brazing) to maintain the ferrite in mechanical compression. Attachment techniques to the metal substrates will include process techniques for fully-compressed ferrite rings. Prototype structures will be fabricated and tested for mechanical strength under thermal cycling conditions.
 
 
TUP097 Fundamental and HOM Coupler Design for the Superconducting Parallel-Bar Cavity cavity, damping, impedance, coupling 1015
 
  • S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • S.U. De Silva
    JLAB, Newport News, Virginia, USA
 
  The superconducting parallel-bar cavity is currently being considered as a deflecting system for the Jefferson Lab 12 GeV upgrade and as a crabbing cavity for a possible LHC luminosity upgrade. Currently the designs are optimized to achieve lower surface fields within the dimensional constraints for the above applications. A detailed analysis of the fundamental input power coupler design for the parallel-bar cavity is performed considering beam loading and the effects of microphonics. For higher beam loading the damping of the HOMs is vital to reduce beam instabilities generated due to the wake fields. An analysis of threshold impedances for each application and impedances of the modes that requires damping are presented in this paper with the design of HOM couplers.  
 
TUP099 Design of Superconducting Parallel-bar Deflecting/Crabbing Cavities with Improved Properties cavity, damping, higher-order-mode, superconductivity 1021
 
  • J.R. Delayen, S.U. De Silva
    ODU, Norfolk, Virginia, USA
  • J.R. Delayen
    JLAB, Newport News, Virginia, USA
 
  The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties, compared to other conventional designs, that is being considered for a number of applications. All designs to-date have been based on straight loading elements and rectangular outer conductors. We present new designs of parallel-bar cavities using curved loading elements and circular or elliptical outer conductors, with significantly improved properties such as reduced surface fields and wider higher-order mode separation.  
 
TUP100 Design of Superconducting Spoke Cavities for High-velocity Applications cavity, superconductivity, higher-order-mode, linac 1024
 
  • J.R. Delayen, S.U. De Silva, C.S. Hopper
    ODU, Norfolk, Virginia, USA
  • J.R. Delayen
    JLAB, Newport News, Virginia, USA
 
  Superconducting single- and multi-spoke cavities have been designed to-date for particle velocities from β~0.15 to β~0.65. Superconducting spoke cavities may also be of interest for higher-velocity, low-frequency applications, either for hadrons or electrons. We present the design of spoke cavities optimized for β=0.8 and β=1.  
 
TUP105 Fabrication of a Model Polyhedral Superconducting Cavity cavity, wakefield, dipole, alignment 1035
 
  • N. Pogue, P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, Texas, USA
 
  Funding: This work was supported in part by the U.S. Department of Energy under Grant DE-FG02-06ER41405
The polyhedral cavity is a superconducting cavity structure in which a multi-cell cavity is built from a Roman-arch assembly of arc segments. Each segment has a Tesla-like r-z profile, and is fabricated either by bonding a Nb foil to a Cu substrate wedge or by depositing a Nb surface on the Cu substrate. The segments are assembled with an arrangement of locking rings and alignment pins, with a controlled narrow gap between segments over much of the arc-span of adjoining segments. A tubular channel is machined in the mating surfaces of the Cu wedges. Dipole modes are suppressed by locating along each channel a tube coated with rf-terminating ferrite. A first model of the cavity is being built to investigate mode structure, evaluate alternatives for the Nb surface fabrication, and develop assembly procedures.
 
 
TUP107 RF-thermal Combined Simulations of a Superconducting HOM Coaxial Coupler cavity, cryomodule, simulation, SRF 1041
 
  • G. Cheng, H. Wang
    JLAB, Newport News, Virginia, USA
  • D.N. Smithe
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work is supported by Jefferson LAB and Tech-X CRADA #2009S005 on “Simulations of Electromagnetic and Thermal Characteristics of SRF Structures”.
To benchmark a multi-physics code VORPAL developed by Tech-X, the High Order Mode (HOM) coaxial coupler design implemented in Jefferson Lab’s 12GeV upgrade cryomodules is analyzed by use of commercial codes, such as ANSYS, HFSS and Microwave Studio. Testing data from a Horizontal Test Bed (HTB) experiment on a dual-cavity prototype are also utilized in the verification of simulation results. The work includes two stages: first, the HOM feedthrough that has a high RRR niobium probe and sapphire insulator is analyzed for the RF-thermal response when there is traveling wave passing through; second, the HTB testing condition is simulated and results from simulation are compared to thermal measurements from HTB tests. The analyses are of coupled-field nature and involve highly nonlinear temperature dependent thermal conductivities and electric resistivities for the eight types of materials used in the design. Accuracy and efficiency are the main factors in evaluation of the performance of the codes.
 
 
TUP238 Development of an Integrated Field Measurement System (IFMS) for NSLS II controls, undulator, insertion, pick-up 1271
 
  • A. Deyhim, S.W. Hartman, J.D. Kulesza
    Advanced Design Consulting, Inc, Lansing, New York, USA
 
  This paper describes the mechanical design, control instrumentation and software for the Integrated Field Measurement System (IFMS) for the Magnetic Measurement Lab for the National Synchrotron Light Source II (NSLS-II) project at Brookhaven National Laboratory. Insertion devices (IDs) at NSLS II need to be accurately surveyed using an integrated field measurement system prior to insertion into the storage ring and can also be used in the tunnel for final tuning of IDs. It is a fast and precise measurement system required in determining the ID magnetic field integrals. The design is a set of long coils supported by two 3-axis X-Y-Z precision linear and two precision rotary positioning stages. The PC is the primary control unit. Eight stepping motor control cards, eight drivers, one digital I/O board, one 6U PXI card, and one integrator are installed to perform remote control and data acquisition.  
 
TUP283 Inductively Coupled, Compact HOM Damper for the Advanced Photon Source impedance, coupling, diagnostics, damping 1358
 
  • G.J. Waldschmidt, D. Horan, L.H. Morrison
    ANL, Argonne, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357
The Advanced Photon Source requires damping of higher-order modes in the storage ring rf cavities in order to prevent beam instability at beam currents in excess of 100 mA proposed for the APS Upgrade. Due to constraints imposed by available space and by existing 35-mm pick-up ports on the cavity, a compact design has been analyzed with a quarter-wave rejection filter of the fundamental mode. Separate broadband, low-frequency and high-frequency dampers are utilized to span the frequency range from 500 MHz to 1500 MHz. The dampers have been designed to reject the fundamental cavity mode, couple strongly to HOM’s, utilize an external rf load, minimize the overall size, and incorporate rf diagnostics. In addition, the mechanical design has been optimized to simplify construction, improve mechanical stability, and reduce thermally induced stresses.
 
 
WEOCS4 Integrated EM & Thermal Simulations with Upgraded VORPAL Software simulation, cryogenics, plasma, niobium 1463
 
  • D.N. Smithe, D. Karipides, P. Stoltz
    Tech-X, Boulder, Colorado, USA
  • G. Cheng, H. Wang
    JLAB, Newport News, Virginia, USA
 
  Funding: This work supported by a DOE Phase II SBIR.
Nuclear physics accelerators are powered by microwaves which must travel in waveguides between room-temperature sources and the cryogenic accelerator structures. The ohmic heat load from the microwaves is affected by the temperature-dependent surface resistance and in turn affects the cryogenic thermal conduction problem. Integrated EM & thermal analysis of this difficult non-linear problem is now possible with the VORPAL finite-difference time-domain simulation tool. We highlight thermal benchmarking work with a complex HOM feed-through geometry, done in collaboration with researchers at the Thomas Jefferson National Accelerator Laboratory, and discuss upcoming design studies with this emerging tool. This work is part of an effort to generalize the VORPAL framework to include generalized PDE capabilities, for wider multi-physics capabilities in the accelerator, vacuum electronics, plasma processing and fusion R&D fields, and we will also discuss user interface and algorithmic upgrades which facilitate this emerging multiphysics capability.
 
slides icon Slides WEOCS4 [0.996 MB]  
 
WEOCS7 Crab Cavity and Cryomodule Prototype Development for the Advanced Photon Source cavity, coupling, alignment, cryomodule 1472
 
  • H. Wang, G. Cheng, G. Ciovati, W.A. Clemens, J. Henry, P. Kneisel, P. Kushnick, K. Macha, J.D. Mammosser, R.A. Rimmer, G. Slack, L. Turlington
    JLAB, Newport News, Virginia, USA
  • R. Nassiri, G.J. Waldschmidt, G. Wu
    ANL, Argonne, USA
 
  Funding: Work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11354.
Two single-cell, superconducting, squashed elliptical crab cavities with waveguides to damp Higher Order Modes (HOM) and Lower Order Mode (LOM) have been designed and prototyped for the Short Pulse X-ray (SPX) project at the Advanced Photon Source (APS). The Baseline cavity with LOM damper on the beam pipe has been vertically tested and exceeded its performance specification with over 0.5MV deflecting voltage. The Alternate cavity design which uses an “on-cell” waveguide damper is preferred due to its larger LOM impedance safety margin. Its prototype cavity has been fabricated by a Computer Numerical Controlled (CNC) machine and is subject to further testing. The conceptual design, layout and analysis for various cryomodule components are presented.
 
slides icon Slides WEOCS7 [7.008 MB]  
 
WEP063 Tracking Particles Through A General Magnetic Field sextupole, lattice, storage-ring, photon 1591
 
  • A. Xiao, M. Borland, L. Emery, Y. Wang
    ANL, Argonne, USA
 
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
A method that tracks particles directly through a general magnetic field described in a 3D field table was added to the code elegant recently. It was realized by converting an arbitrary particle's motion to a combination of free-drift motion and centripetal motion through the coordinate system rotation and using a general linear interpolation tool developed at the Advanced Photon Source (APS). This method has been tested by tracking particles through conventional magnetic elements (dipole, sextupole, etc.) to verify reference coordinate system conversions, tracking accuracy, and long-term tracking stability. Results show a very good agreement between this new method and the traditional method. This method is not designed to replace mature traditional methods that have been used in most tracking codes. Rather, it is useful for magnets with complicated field profiles or for studying edge effects.
 
 
WEP085 Beam Breakup Studies for New Cryo-Unit simulation, cavity, damping, linac 1633
 
  • S. Ahmed, F.E. Hannon, A.S. Hofler, R. Kazimi, G.A. Krafft, F. Marhauser, B.C. Yunn
    JLAB, Newport News, Virginia, USA
  • I. Shin
    University of Connecticut, Storrs, Connecticut, USA
 
  In this paper, we report the numerical simulations of cumulative beam breakup studies for a new cryo-unit for injector design at Jefferson lab. The system consists of two 1-cell and one 7-cell superconducting RF cavities. The study has been performed using a 2-dimensional time-domain code TDBBU developed in-house. The stability has been confirmed for the present setup of beamline elements with different initial offsets and currents ranging 1 mA - 100 mA.  
 
WEP178 Electromagnetic Field Measurement of Fundamental and Higher-order Modes for 7-cell Cavity of PETRA-II impedance, cavity, electromagnetic-fields, acceleration 1822
 
  • Y. Kawashima, A. Blednykh, J. Cupolo, M.A. Davidsaver, B. Holub, H. Ma, J. Oliva, J. Rose, R. Sikora, M. Yeddulla
    BNL, Upton, Long Island, New York, USA
 
  The booster synchrotron for NSLS-II will include a 7-cell PETRA cavity, which was manufactured for the PETRA-II project at DESY. The cavity fundamental frequency operates at 500 MHz. In order to verify the impedances of the fundamental and higher-order modes (HOM) which were calculated by computer code, we measured the magnitude of the electromagnetic field of the fundamental acceleration mode and HOM’s, using the bead-pull method. To keep the cavity body temperature constant, we used a chiller system to supply cooling water at 20 degrees C. The bead-pull measurement was automated with a computer. We encountered some issues during the measurement process due to the difficulty in measuring the electromagnetic field magnitude in a multi-cell cavity as compared to a single-cell cavity. We describe the apparatus for the field measurement and the obtained results.  
 
WEP186 Wake Potentials in the ILC Interaction Region wakefield, cavity, interaction-region, vacuum 1837
 
  • A. Novokhatski
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.
The vacuum chamber of the ILC Interaction Region (IR) is optimized for best detector performance. It has special shaping to minimize additional backgrounds due to the metal part of the chamber. Also, for the same reason this thin vacuum chamber does not have water cooling. Therefore, small amounts of power, which may be deposited in the chamber, can be enough to raise the chamber to a high temperature. One of the sources of “heating” power is the electromagnetic field of the beam. This field diffracts by non-regularities of the beam pipe and excites free-propagating fields, which are then absorbed by the pipe wall. In addition we have a heating power of the image currents due to finite conductivity of the metallic wall. We will discuss these effects as updating the previous results.
 
 
WEP187 Simulation and Optimization of Project-X Main Injector Cavity cavity, simulation, dipole, impedance 1840
 
  • L. Xiao, C.-K. Ng
    SLAC, Menlo Park, California, USA
  • J.E. Dey, I. Kourbanis, Z. Qian
    Fermilab, Batavia, USA
 
  Project-X, a proposed high intensity proton facility to support a world-leading program in neutrino and flavor physics at Fermilab, plans to use the existing FNAL recycler and main injector (MI) complex, but requires upgrading the MI RF system. Currently there are two proposed 53MHz RF cavity designs for 6GeV to 120GeV operation. One design is a straight-line quarter wave resonant cavity, and the other a tapered quarter wave resonant cavity. The electromagnetic (EM) simulations of the two cavity designs are carried out by using SLAC finite element parallel code suit ACE3P. The EM simulation results for the RF parameters and higher-order-mode (HOM) properties have shown that the tapered cavity design has better RF performance than the straight one. The tapered cavity shape will then be optimized for the final design to meet the specified performance requirements for the Project-X. Possible multipacting zones in the cavity will be identified and the use of HOM dampers investigated for the optimized design.  
 
THP068 Multipacting Analysis for the Half-Wave Spoke Resonator Crab Cavity for LHC cavity, resonance, simulation, coupling 2258
 
  • Z. Li, L. Ge
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by DOE Contract No. DE-AC02-76SF00515 and was partially supported by the DOE through the US LHC Accelerator Research Program (LARP).
A compact 400-MHz half-wave spoke resonator (HWSR) superconducting crab cavity is being developed for the LHC upgrade. The cavity shape and the LOM/HOM couplers for such a design have been optimized to meet the space and beam dynamics requirements, and satisfactory RF parameters have been obtained. As it is known that multipacting is an issue of concern in a superconducting cavity which may limit the achievable gradient. Thus it is important in the cavity RF design to eliminate the potential MP conditions to save time and cost of cavity development. In this paper, we present the multipacting analysis for the HWSR crab cavity using the Track3P code developed at SLAC, and to discuss means to mitigate potential multipacting barriers.
 
 
THP083 Fabrication and Design of the Main Linacs for CLIC with Damped and Detuned Wakefield Suppression and Optimised Surface Electromagnetic Fields wakefield, dipole, linac, damping 2291
 
  • R.M. Jones, A. D'Elia, V.F. Khan
    UMAN, Manchester, United Kingdom
  • A. Grudiev, G. Riddone, W. Wuensch
    CERN, Geneva, Switzerland
 
  Funding: Research leading to these results has received funding from the European commission under the FP7 research infrastructure grant no. 227579.
We report on the suppression of long-range wakefields in the main linacs of the CLIC collider. This structure operates with a 120 degree phase advance per cell. The wakefield is damped using a combination of detuning the frequencies of beam-excited higher order modes and by light damping, through slot-coupled manifolds. This serves as an alternative to the present baseline CLIC design which relies on heavy damping. Detailed simulations of both the optimised surface fields resulting from the monopole mode, and from wakefield damping of the dipole modes, are discussed. We report on fabrication details of a structure consisting of 24 cells, diffusion bonded together. This design, known as CLICDDSA, takes into practical mechanical engineering issues and is the result of several optimisations since the earlier CLICDDS designs. This structure is due to be tested for its capacity to sustain high gradients at CERN.
 
 
THP124 Higher Current Operation for the APS Upgrade klystron, cavity, lattice, feedback 2351
 
  • K.C. Harkay, G. Berenc, M. Borland, Y.-C. Chae, L. Emery, D. Horan, R. Nassiri, V. Sajaev, K.M. Schroeder, G.J. Waldschmidt, A. Xiao, C. Yao
    ANL, Argonne, USA
 
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source is a 7-GeV hard x-ray synchrotron light source. Operation for users is delivered at a nominal current of 100 mA in one of three bunch patterns. The APS Upgrade calls for a minimum planned operating current of 150 mA, with an option to deliver beam up to 200 mA. The high-current threshold in the storage ring has been explored, and storage ring components have been identified that either drive collective instabilities or are subjected to excessive beam-drive higher-order-mode (HOM) heating. In this paper, we describe machine studies at 150 mA in a special lattice that simulates the upgraded APS. We also describe the accelerator upgrades that are required to accommodate 200-mA operation, as well as the ongoing machine studies plan.
 
 
THP212 Superconducting Cavity Design for Short-Pulse X-Rays at the Advanced Photon Source cavity, damping, cryomodule, coupling 2516
 
  • G.J. Waldschmidt, B. Brajuskovic, R. Nassiri
    ANL, Argonne, USA
  • G. Cheng, J. Henry, J.D. Mammosser, R.A. Rimmer, H. Wang
    JLAB, Newport News, Virginia, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Superconducting cavities have been analyzed for the short-pulse x-ray (SPX) project at the Advanced Photon Source (APS). Due to the strong damping requirements in the APS storage ring, single-cell superconducting cavities have been designed. The geometry has been optimized for lower-order and higher-order mode damping, reduced peak surface magnetic fields, and compact size. The integration of the cavity assembly, with dampers and waveguide input coupler, into a cryomodule will be discussed.
 
 
FROBS3 Progress on Superconducting RF for the Cornell Energy-Recovery-Linac cavity, SRF, linac, cryomodule 2580
 
  • M. Liepe, G.H. Hoffstaetter, S. Posen, J. Sears, V.D. Shemelin, M. Tigner, N.R.A. Valles, V. Veshcherevich
    CLASSE, Ithaca, New York, USA
 
  Cornell University is developing the superconducting RF technology required for the construction of a 5 GeV, 100 mA light source driven by an energy-recovery linac. Currently, a 100 mA injector cryomodule is under extensive testing and prototypes of the components of the SRF main linac cryomodule are under development, fabrication and testing. In this paper we give an overview of these recent activities at Cornell.  
slides icon Slides FROBS3 [10.577 MB]  
 
FROBS6 High Current SRF Cavity Design for SPL and eRHIC cavity, damping, dipole, electron 2589
 
  • W. Xu, I. Ben-Zvi, R. Calaga, H. Hahn, E.C. Johnson, J. Kewisch
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
In order to meet the requirements of high average current accelerators, such as the Superconducting Proton Linac (SPL) at CERN and the electron–ion collider (eRHIC) at BNL, a high current 5-cell SRF cavity, called BNL3 cavity, was designed. The optimization process aimed at maximizing the R/Q of the fundamental mode and the geometry factor G under an acceptable RF field level of Bpeak/Eacc or Epeak/Eacc. In addition, a pivotal consideration for the high current accelerators is efficient damping of dangerous higher-order modes (HOM) to avoid inducing emittance degradation, cryogenic loading or beam-breakup (BBU). To transport the HOMs out of the cavity, the BNL3 cavity employs a larger beam pipe, allowing the propagation of HOMs but not the fundamental mode. Moreover, concerning the BBU effect, the BNL3 cavity is aimed at low (R/Q)Qext for dangerous modes, including dipole modes and quadrupole modes. This paper presents the design of the BNL3 cavity, including the optimization for the fundamental mode, and the BBU limitation for dipole and quadrupole modes. The BBU simulation results show that the designed cavity is qualified for high-current, multi-pass machines such as eRHIC.
 
slides icon Slides FROBS6 [2.577 MB]