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Abstract

A new method is developed to optimize low-emittance
and low-beta lattices for ALS ultimate upgrade. The study
provides us a different perspective on the lattice design,
and confirms results early found using both Global Scan
of All Stable Settings (GLASS) and Genetic Algorithms
(GA) techniques.

INTRODUCTION

The Advanced Light Source (ALS) at Lawrence Berke-
ley National Laboratory is one of the earliest 3rd generation
light sources. Since the commissioning in 1993, a series
of upgrades have been successfully completed, including
the installation of superconducting bend magnets (Super-
bends) in 2001 [1] and implementation of top-off injection
in 2007 [2]. To keep the ALS competitive in the future,
it was recognized a few years ago that further upgrades to
lower the storage ring emittance will be necessary.

The ALS low-emittance upgrade project has been started
since 2009 [3]. After this upgrade is finished, the hori-
zontal emittance is reduced by three factors from current
6.8 nm-rad to about 2 nm-rad. Fig. 1(a) and (b) show op-
tics functions of one ALS sector before and after the up-
grade. From the plots we can see that the major quantitative
changes of the optics functions are the dispersion functions
which are increased in the straights and decreased in the
arcs, and the horizontal beta functions which are increased
in the straights. This upgrade, so-called baseline upgrade
which has been fully funded, will improve the brightness
of many beamlines by several factors. It was quickly real-
ized that the baseline upgrade lattice does not provide “ul-
timate” insertion device brightness due to the phase space
mismatch of the electron and photon beams and large dis-
persion functions in the center of straights. If we could re-
duce the horizontal beta and dispersion functions to small
values at the center of straight, i.e., upgrade the lattice to
the one shown in Fig. 1(c) (ultimate upgrade), the inser-
tion device brightness could be improved by another 2 or 3
factors.

We develop a new approach, so-called “inverse” method,
to search for low-emittance and low-beta lattices. This ap-
proach can provide us a different perspective on the lattice
design. The study confirms results early found using both
Global Scan of All Stable Settings (GLASS) [4] and Multi
Objective Genetic Algorithms (MOGA) [5] techniques.
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Figure 1: Layout of one sector of ALS lattice and its associ-
ated optics functions at three different operation modes: (a)
Current lattice, (b) Baseline upgrade, (c) Ultimate upgrade.

THEORY

It is well known that the horizontal natural emittance of
a storage ring is given by

εx = Cqγ
2 〈H(s)/|ρ(s)|3〉

Jx〈1/ρ(s)2〉 , (1)

where Cq = 3.832 × 10−13 m; γ = E/mc2 is the Lorentz
factor of the electron beam; Jx is the horizontal partition
factor; ρ(s) is the bending radius; s represents the longi-
tudinal position along the ring; and the brackets “〈〉” mean
averaging over the storage ring; the H(s)-function is given
by

H(s) = γxη2
x + 2αxηxη′

x + βxη′2
x , (2)

where βx, αx and γx are Twiss functions of the beam; and
ηx and η′

x are dispersion functions.
For an isomagnetic storage ring which has identical

bending magnets, Eq. (1) reduces to

εx =
Cq

Jx

γ2

ρ
〈H(s)〉, (3)

and 〈H(s)〉 is given by

〈H(s)〉 =
1

2πρ

∫
dipole

(γxη2
x + 2αxηxη′

x + βxη′2
x )ds. (4)
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Here,
∫

dipole
· · · ds represents the integration over the dipoles

in the storage ring. For notational simplicity, the subscript
x for Twiss and dispersion functions will be suppressed in
the following discussions.

For a sector dipole, Twiss functions β(s), α(s) and γ(s)
and dispersion functions η(s) and η′(s) along the dipole
can be express as functions of their values (β0, α0, γ0, η0

and η′
0) at the entrance of the dipole [6], i.e.,

β(s) = β0C
2 − 2α0

CS

k
+ γ0

S2

k2
,

α(s) = β0kCS + α0(C2 − S2) − γ0
CS

k
,

γ(s) = β0k
2S2 + 2α0kCS + γ0C

2,

η(s) = η0C + η′
0

S

k
+

1
ρk2

(1 − C),

η′(s) = −η0kS + η′
0C +

S

ρk
, (5)

where C = cos ks and S = sin ks; k2 = 1
ρ2 + 1

Bρ
∂By

∂x is
the focusing function of the dipole; if it is a focusing dipole,
k2 > 0 and k =

√
k2 is a real number; if it is a defocusing

dipole, k2 < 0 and k = i
√|k2| is an imaginary number.

Substituting Eq. (5) into Eq. (4), and integrating the re-
sults, we can obtain the average H-function for the sector
dipole as follows [6]

〈H(s)〉dipole = γ0η
2
0 + 2α0η0η

′
0 + β0η

′2
0

+
2l

ρ

{
−(γ0η0 + α0η

′
0)

kl − sin kl

k3l2

+(α0η0 + β0η
′
0)

1 − cos kl

k2l2

}

+
l2

ρ2

{
γ0

3kl − 4 sinkl + sin kl cos kl

2k5k3

−α0
(1 − cos kl)2

k4l3
+ β0

kl − cos kl sin kl

2k3l3

}
. (6)

It is obvious that the average H-function 〈H(s)〉dipole of
a sector dipole is determined by the Twiss and dispersion
parameters at the entrance of the dipole.

For a rectangular dipole, the design orbit of electron
beam are not normal to the edges of the magnet. It turns
out that the rectangular dipole contains an extra focus-
ing/defocusing effects at the edges. In the familiar impulse
approximation for edge focusing, we assume that β and η
functions are unchanged in going through the edge fields,
and α0 and η′

0 are changed by [6]

α1 = α0 − β0

ρ
tanφ, η′

1 = η′
0 +

η0

ρ
tanφ, (7)

where φ is the angle of the design orbit with respect to the
edges of the dipole. Thus, to calculate 〈H(s)〉dipole for a
rectangular dipole, we need to replace α0 and η′

0 in Eq. (6)
using α1 and η′

1 defined in Eq. (7).
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Figure 2: Horizontal natural emittance of the ALS storage
ring as function of β0 for a given dispersion functions η0

and η′
0. The different curves represent different pairs (η0,

η′
0).
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Figure 3: Local minimum horizontal emittance εx as func-
tions of dispersion functions η0 and η′

0. The emittance
value is colored coded.

It can be calculated that for an isomagnetic storage ring
the damping partition number is approximated by

Jx = 1 −D ≈ 1 + 2
sin kl − kl

kl
+

αcR

ρ
, (8)

where αc is the momentum compaction factor, and R is the
average radius of the ring.

Eventually, we can express the horizontal nature emit-
tance of an isomagnetic storage ring as follows

εx =
Cq

Jx

γ2

ρ

1
N

∑
〈H(s)〉dipole, (9)

where N is the number of the dipole in the ring,
〈H(s)〉dipole is given by Eq. (6), and “

∑
” means summa-

tions of all the dipoles.

APPLY TO ALS LATTICE

Since the basic ALS sector has a mirror symmetric triple
bend structure (Fig. 1), the two outer bends have the same

WEP031 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

1550C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Beam Dynamics and EM Fields

Dynamics 01: Beam Optics (lattices, correction, transport)



Figure 4: Lattice solutions calculated using two different
approaches, the “inverse” method represented by dots and
the Genetic Algorithms represented by circles.

average H-functions. Thus, the horizontal emittance of the
ALS storage ring is given by

εx(β0, α0, η0, η
′
0, kqfa) =

Cqγ
2

ρJx

(
2
3
〈H〉o +

1
3
〈H〉i

)
,

(10)
where the subscripts o and i are used to identify the outer
and inner bends. Given the Twiss and dispersion param-
eters β0, α0, η0 and η′

0 at the entrance of the outer bend,
and the strength kqfa of the quadrupole “QFA” between
outer and inner bends, 〈H〉o and 〈H〉i can be easily evalu-
ated using Eq. (6). Thus, the horizontal emittance εx is the
function of 5 parameters β0, α0, η0, η

′
0 and kqfa.

Because of the constraint of the mirror symmetric struc-
ture, the Twiss parameter αic and the dispersion function
η′

ic should be equal to zeros at the center of the inner bend,
i.e., αic = 0 and η′

ic = 0. Applying the constraint η′
ic = 0,

we can solve the quadrupole “QFA” strength kqfa as func-
tions of η0 and η′

0. Applying the constraint αic = 0, we can
also solve α0 as function of β0. However, to avoid solving
α0, we use the beta function βic at the center of the inner
bend as the free variable instead of β0, and express β0 and
α0 as function of βic, η0 and η′

0. Thus, the five parameter
emittance εx(β0, α0, η0, η

′
0, kqfa) function reduces to three

parameter function εx(βic, η0, η
′
0).

The emittance ε vs the beta function β0 for given disper-
sion functions η0 and η′

0 at the entrance of outer bends are
shown in Fig. 2. For each pair of dispersion functions (η0,
η′
0), we could find a local minimum emittance. For dis-

persion free ALS lattice, i.e.,(η0, η′
0)=(0,0), the theoretical

minimum emittance we can achieve is about 6 nm-rad. Re-
laxing the constraint of the dispersion function, the emit-
tance can be reduced. The local minimum emittance as
functions of dispersion function pair (η0, η′

0) are shown in
Fig. 3. We can see the global minimum emittance we can
achieve is about 1.3 nm-rad when (η0, η′

0)=(1.7 cm,-0.065).
Having the desired values of the ring emittance and its

associated Twiss parameters and dispersion functions at the
entrance of the outer dipole, the strength of quadrupoles

“QF” and “QD” in the straight are determined using lat-
tice matching technique with the constraints α = 0 and
η′ = 0 at the center of the straight. After obtaining all the
quadrupole strengths, the stabilities of the ring are checked,
and Twiss and dispersion functions at the center of the
straight are calculated. The horizontal emittances vs beta
functions at the center of straight are shown in Fig. 4. For
comparison, the solutions optimized using Genetic Algo-
rithm are also shown in the plot. A good agreement be-
tween them is observed. The “inverse” method gives all the
possible solution, where the genetic algorithms only gives
the optimal ones. It is obvious that for a given emittance,
there are two distinct solution regions: one has a large beta
function corresponding the lattice used for the baseline up-
grade, and the other has a low beta function which can be
used for ALS ultimate upgrade.

It is worth to point out that from Fig. 3 we can see that
the theoretical minimum emittance we can achieve for the
ALS lattice is about 1.3 nm-rad. However, from Fig. 4,
we see that the minimum emittance is about 1.7 nm-rad.
This difference is because some solutions shown in Fig. 3
do not exist when determining the quadrupole strengths of
“QF” and “QD” using lattice matching technique. If addi-
tional quadrupole families are added to the straight we may
restore the lost solutions.

CONCLUSIONS

In this paper, we present a new method to optimize low-
emittance and low-beta lattices for ALS ultimate upgrade.
It provides us a different perspective on the lattice design,
and confirms results early found using both Global Scan
of All Stable Settings (GLASS) and Genetic Algorithms
(GA) techniques. This method reveals that the horizontal
natural emittance of ALS lattice can be further reduced to
1.3 nm-rad if additional quadrupole families are added to
the straight sections, which were not found using GLASS
and GA techniques.

REFERENCES

[1] D. Robin et. al., Proceedings of PAC01, Chicago, USA, pp.
2632-2634.

[2] C. Steier et. al., Proceedings of PAC09, Vancouver, BC,
Canada, TU5RFP042.

[3] C. Steier et. al., Proceedings of IPAC10, Kyoto, Japan,
pp.2645-2647.

[4] D.S. Robin, W. Wan, F. Sannibale and V.P. Suller, Phys. Rev.
ST Accel. Beams 11, 024002 (2008).

[5] L. Yang et. al., Nucl. Instr. and Meth. A 609, 50-57 (2009).

[6] R.H. Helm, M.J. Lee, and P.L. Morton, 5th IEEE Particle Ac-
celerator Conference, San Francisco, CA, USA, Mar 1973,
pp.900

[7] C. Sun et. al., these proceedings, TUODN4.

[8] C. Sun et. al., Proceedings of IPAC10, Kyoto, Japan, pp.
2642-2644.

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA WEP031

Beam Dynamics and EM Fields

Dynamics 01: Beam Optics (lattices, correction, transport) 1551 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


