

Accelerator Physics Center

MUON COLLIDER INTERACTION REGION AND MACHINE-DETECTOR INTERFACE Nikolai Mokhov Y. Alexahin, V. Kashikhin, S. Striganov, A. Zlobin Fermilab

PAC2011 Conference New York March 28 - April 1, 2011

OUTLINE

- Introduction
- IR Lattice and Magnets
- Background and Heat Load Sources
- Energy Deposition in IR Magnets
- MDI and Backgrounds in Detector

Introduction

Physics goals of a Muon Collider (MC) can only be reached with appropriate design of the ring, interaction region (IR), high-field superconducting magnets, machine-detector interface (MDI) and detector. All - under demanding requirements, arising from the short muon lifetime, relatively large values of the transverse emittance and momentum spread, unprecedented dynamic heat loads (0.5-1 kW/m) and background particle rates in collider detector.

Muon Collider Parameters

E _{cms}	TeV	1.5	4
f _{rep}	Hz	15	6
n _b		1	1
Δ †	μs	10	27
Ν	1012	2	2
ε _{x,y}	μ m	25	25
L	10 ³⁴ cm ⁻² s ⁻¹	1	4

IR & Chromatic Correction Section

8-T dipoles in IR to generate large D at sextupoles to compensate chromaticity and sweep decay products; momentum acceptance 1.2%; dynamic aperture sufficient for transverse emittance of 50 μ m; under engineering constraints.

Iterative studies on lattice and MDI with magnet experts: High-gradient (field) large-aperture short Nb₃Sn quads and dipoles.

Muon Collider IR & MDI - N.V. Mokhov

Magnet Requirements/Issues

- Dipoles in IR do an excellent job in spreading decay electrons thus reducing backgrounds in detector; split them in 2-3 m modules with a thin liner inside and tungsten masks in interconnect regions
- Full aperture A = 10 σ_{max} + 2cm
- Maximum tip field in quads = 10T (G=200T/m for A=10cm)
- B = 8T in large-aperture dipoles, = 10T in the arcs
- IR quad length < 2m (split in parts if necessary) with minimal or no shielding inside
- Serious quadrupole, dipole and interconnect technology and design constraints

IR Magnets

<u>Quadrupoles:</u> on limits of current state-of-the-art Nb₃Sn technology; with tungsten liners in some of them

Dipoles: open midplane – field quality and stresses are an issue. 160-mm coil aperture, 55-mm gap with Al-spacers, L=6m, B=8 T. Tungsten rods cooled at LN2.

<u>Magnet interconnects</u>: up to 50 cm for end parts, multipole correctors and tight 20-cm 5σ tungsten masks (don't forget neutrino hazard for TeV beams).

Sources of Background and Dynamic Heat Load

- 1. <u>**IP**</u> $\mu^+\mu^-$ collisions: Production x-section 1.34 pb at $\int S = 1.5$ TeV (negligible compared to #3).
- <u>IP incoherent e⁺e⁻ pair production</u>: x-section 10 mb which gives rise to background of 3×10⁴ electron pairs per bunch crossing (manageable with nozzle & detector B)
- <u>Muon beam decays</u>: Unavoidable bilateral detector irradiation by particle fluxes from beamline components and accelerator tunnel - major source at MC: For 0.75-TeV muon beam of 2x10¹², 4.28x10⁵ dec/m per bunch crossing, or 1.28x10¹⁰ dec/m/s for 2 beams; 0.5 kW/m.
- Beam halo: Beam loss at limiting apertures; severe, can be taken care of by an appropriate collimation system far upstream of IP.

MARS15 Modeling

- Detailed magnet geometry, materials, magnetic fields maps, tunnel, soil outside and a simplified experimental hall plugged with a concrete wall.
- Detector model with $B_z = 3.5$ T and tungsten nozzle in a BCH₂ shell, starting at ±6 cm from IP with R = 1 cm at this z.
- 750-GeV bunches of 2×10¹² μ ⁻ and μ ⁺ approaching IP are forced to decay at $|S| < S_{max}$, where S_{max} up to 250 m at 4.28×10⁵ / m rate, 1000 turns.
- Cutoff energies optimized for materials & particle types, varying from 2 GeV at ≥100 m to 0.025 eV (n) and 0.2 MeV (others) in the detector.

Energy Deposition in IR Dipoles

The open midplane design for the dipoles provides for their safe operation. The peak power density in the IR dipoles is about 2.5 mW/g, safely below the quench limit for the Nb₃Sn superconductor based coils at the 1.9-K operation.

Four 7-mm wide aluminum spacers in the gap are found to have a minimal impact on the coil heating.

PAC2010, New York, March 28 - April 1, 2011

Muon Collider IR & MDI - N.V. Mokhov

Energy Deposition in IR Quadrupoles

Machine-Detector Interface

Sophisticated shielding: W, iron, concrete & BCH₂

Background Suppression

Dipoles close to the IP and tungsten masks in each interconnect region help reduce background particle fluxes in the detector by a substantial factor. The tungsten nozzles, assisted by the detector solenoid field, trap most of the decay electrons created close to the IP as well as most of incoherent e⁺e⁻ pairs generated in the IP. With additional MDI shielding, total reduction of background loads by more than three orders of magnitude is obtained.

PAC2010, New York, March 28 - April 1, 2011

Background Loads in Detector

Maximum neutron fluence and absorbed dose in the innermost layer of the silicon tracker for a one-year operation are at a 10% level of that in the LHC detectors at the luminosity of 10^{34} cm⁻²s⁻¹

Summary

• A consistent IR lattice, which satisfies all the requirements from the beam dynamics point of view, has been designed for a 1.5-TeV muon collider with luminosity of 10^{34} cm⁻²s⁻¹.

- Required IR magnets can be built using Nb_3Sn technology.
- Design solutions have been found and tested in simulations to provide IR magnet quench and mechanical stability as well as minimize dynamic heat load to 1.9-K cryogenics.
- Detector background simulations are advancing well, MDI optimization is underway, detector physics modeling in presence of the machine backgrounds has been started.
- More work is needed on all of the above directions.