

Lattice design for the future ERL-based electron hadron colliders eRHIC and LHeC

D. Trbojevic, J. Beebe-Wang, Y. Hao, V. N. Litvinenko, V. Ptitsyn, D. Kayran, and N. Tsoupas

eRHIC and LHeC lattice design

Electron Energy [GeV]	60
Luminosity [cm ⁻² s ⁻¹]	1x10 ³³
Electron bunch length [µm]	300
Bunch interval [nm]	50
Transverse emittance $\gamma \epsilon_{x,y}$ [µmrad]	50
<i>rms</i> beam size [µm]	7
Repetition rate	CW
Total wall power [MW]	100

eRHIC - $\beta^*=5$ cm

	Protons	Electrons
Maximum energy [GeV]	325	30
# of bunches/bunch freq [MHz]	166	14.08
Bunch intensity	2x10 ¹¹	0.2×10 ¹¹
Bunch charge [nC]	32	3.5
Beam current [mA]	415	50
Transverse norm. emittan. [µmrad]	0.18	20
<i>rms</i> beam size [nm]	0.52	0.52
Polarization	70	80
Luminosity @ 25 GeV [cm ⁻² s ⁻¹]	1.5 x 10 ³⁴	

BROOKHAVEN

Basic concept of the adjustable momentum compaction lattice $M_{5,6} = 0$

TUAOA3 PAC-2011 New York

3/27/11

TUAOA3 PAC-2011 New York

6

Basic arc cell of the LHeC with α =0

15

Small emittance strong focusing

Synchrotron Integrals For separated functions:

- I1 = 0.19008E-01
- I2 = 0.89124E-02
- I3 = 0.12642E-04
- I4 = 0.38244E-07
- 15X = 0.10262E-07

EPX = 6.0829 nm rad

Synchrotron Integrals For the combined function: $I_1 = 0.55866E-02$ $I_2 = 0.69494E-02$ $I_3 = 0.76864E-05$ $I_4 = 0.13899E-01$ $I_{5x} = 7.9684E-10$

TUAOA3 PAC-2011 New York

3/27/11

Arc lattice with separated function magnets

```
E_{MAX}=30.0 GeV, BRHO = 100.069228545 Tm
```

```
Dipoles:
L=1.2 m, θ=0.005123124, B=0.427222589 T,
R=234 m (12 passes 7.5 GW) - 182 dipoles per sextant
```

```
Quadrupoles:

L_{fodo}= 0.40 m, G_f = 191.3245 T/m, G_d = -164.3118 T/m

L_{qf3} = 0.60 m, G_f = 212.739 T/m

L_{qd2} = 0.44 m, G_d =-202.53 T/m
```

Length of the arc cell= 13.6717 m Seven dipoles per cell, 26 cells = 355.46433 m Total dipole number per sextant 26•7=182.

Arc lattice combined function magnets properties

E_{MAX}=30.0 GeV, BRHO = 100.0692 Tm Combined Function Magnets:

L=1.2 m, θ =0.00356, B=0.28481 T,

R=351 m (For twelve passes deposited energy is 5.0 MW)

Gradients for focusing in the FODO cells: $G_f = 120 \text{ T/m}$ and for defocusing $G_d = -107 \text{ T/m}$.

Combined function magnets in the middle of the cell: $L_{qf3} = 0.80 \text{ m}, G_f = 220 \text{ T/m}$ $L_{qd2} = 1.2 \text{ m}, G_d = -121 \text{ T/m}$ Length of the arc cell= 9.8740 m 36 cells • 9.8740= 355.46433 m Total dipole number per sextant 36•(6+2•QLF3/BL)=262.08

SUMMARY

• Lattice design of the future lepton-hadron colliders LHeC and eRHIC based on an ERL, with $M_{5,6}$ = 0 as multiple passage electrons through linacs requires from the arcs has been described.

• Arc lattice provide very strong focusing – small size betatron and dispersion functions.

• Linacs lattice is defined by the triplet quadrupoles of the spreaders and combiners.