Keyword: vacuum
Paper Title Other Keywords Page
MOOBS4 Electron Cloud Experiments at Fermilab: Formation and Mitigation electron, proton, instrumentation, simulation 27
 
  • R.M. Zwaska
    Fermilab, Batavia, USA
 
  We have performed a series at Fermilab to explore the Electron Cloud phenomenon. The Main Injector will have its beam intensity increased four-fold in the Project X upgrade, and would be subject to instabilities from the Electron Cloud. We present measurements of the Cloud formation in the Main Injector and experiments with materials for the mitigation of the Cloud. An experimental installation of Titanium-Nitride (TiN) coated beam pipes has been under study in the Main Injector since 2009; this material was directly compared to an adjacent stainless chamber through Electron Cloud measurement with Retarding Field Analyzers (RFAs). Over the long period of running we were able to observe the secondary electron yield (SEY) change and correlate it with electron fluence, establishing a conditioning history. Additionally, the installation has allowed measurement of the electron energy spectrum, comparison of instrumentation techniques, and energy-dependent behavior of the Electron Cloud. Finally, a new installation, developed in conjunction with Cornell and SLAC, will allow direct SEY measurement of material samples irradiated in the accelerator.  
slides icon Slides MOOBS4 [2.975 MB]  
 
MOOCN1 Status of the LHC Operations and Physics Program luminosity, proton, injection, status 32
 
  • S. Redaelli
    CERN, Geneva, Switzerland
 
  The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) has just completed a successful first year of operation. In 2010, the primary goal to achieved a peak luminosity of 1032cm−2s−1 at a 7 TeV centre-of-mass energy was achieved and the machine achieved safely and reliably routine operation in the multi-MJ regime. The good results of 2010 have laid a solid foundation towards the achievement of the primary physics goal to deliver an integrated luminosity of 1 fb−1 in 2011. A fast and efficient LHC re-commissioning in 2011 lead already to a peak luminosity of 2.5×1032cm−2s−1 achieved in the fourth commissioning week. In this paper, the 2010 commissioning experience is reviewed and the present status and perspective are presented.  
slides icon Slides MOOCN1 [15.792 MB]  
 
MOOCS5 Space-charge Effects in H Low-energy Beam Transport of LANSCE emittance, space-charge, beam-transport, simulation 64
 
  • Y.K. Batygin, C. Pillai, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
 
  The 750-keV low-energy beam transport of the Los Alamos Neutron Science Center (LANSCE) linac consists of two independent beam lines for simultaneous injection of H+ and H beams into the linear accelerator. While transport of the H+ beam is seriously affected by uncompensated space charge forces, the same effect for H is hidden by presence of multiple beam collimators and beam chopping. Recent results from beam development experiments indicate a significant influence of space charge on H beam dynamics in the low-energy beam transport. Measurements of beam emittance along beam transport show the formation of S-shaped filamentation in the particle distribution phase space, typical with the presence of non-linear space charge forces. Results are supported by particle tracking simulations with the PARMILA, BEAMPATH, and TRACE codes.  
slides icon Slides MOOCS5 [6.304 MB]  
 
MOP011 Standing Wakefield Accelerator Based on Periodic Dielectric Structures wakefield, simulation, electron, radiation 124
 
  • X. Wei, G. Andonian, J.B. Rosenzweig, D. Stratakis
    UCLA, Los Angeles, USA
 
  In recent years dielectric wakefield accelerators (DWA) have attracted significant attention for applications in high energy physics and THz radiation sources. However, one needs sufficiently short driving bunches in order to take advantage of the DWA's scaling characteristics to achieve high gradient and high frequency accelerating fields. Since a single large charge Q driving bunch is difficult to be compressed to the needed rms bunch length, a driving bunch train with smaller Q and small emittance, should be used instead for the DWA. In view of this senario, the group velocity of the excited wakefields needs to be decreased to nearly zero, so the electromagnetic energy does not vacate the structure during the bunch train. In this paper we propose a standing wakefield accelerator based on periodic dielectric structures, and address the difference between the proposed structure and the conventional DWA.  
 
MOP012 Ultra-High Gradient Compact S-Band Accelerating Structure klystron, coupling, linac, simulation 127
 
  • L. Faillace, R.B. Agustsson, P. Frigola, A.Y. Murokh
    RadiaBeam, Santa Monica, USA
  • V.A. Dolgashev
    SLAC, Menlo Park, California, USA
  • J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • V. Yakimenko
    BNL, Upton, Long Island, New York, USA
 
  Funding: Dept. of Energy DE-SC0000866
In this paper, we present the radio-frequency design of the DECA (Doubled Energy Compact Accelerator) S-band accelerating structure operating in the pi-mode at 2.856 GHz, where RF power sources are commonly available. The development of the DECA structure will offer an ultra-compact drop-in replacement for a conventional S-band linac in research and industrial applications such as drivers for compact light sources, medical and security systems. The electromagnetic design has been performed with the codes SuperFish and HFSS. The choice of the single cell shape derives from an optimization process aiming to maximize RF efficiency and minimize surface fields at very high accelerating gradients, i.e. 50 MV/m and above. Such gradients can be achieved utilizing shape-optimized elliptical irises, dual-feed couplers with the "fat-lip" coupling slot geometry, and specialized fabrication procedures developed for high gradient structures. The thermal-stress analysis of the DECA structure is also presented.
* V. Dolgashev, "Status of X-band Standing Wave Structure Studies at SLAC", SLAC-PUB-10124, (2003).
** C. Limborg et al., "RF Design of LCLS Gun", LCLS-TN-05-03 (2005).
 
 
MOP041 17 GHz Overmoded Dielectric Photonic Bandgap Accelerator Cavity cavity, lattice, simulation, HOM 175
 
  • A.M. Cook, B.J. Munroe, M.A. Shapiro, R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
 
  Funding: This research is supported by the U.S. Department of Energy, Office of High Energy Physics.
We present the design of an overmoded photonic band gap (PBG) accelerator cavity, made from a 2D lattice of sapphire rods supported between copper plates, that operates in a TM02-like mode at 17 GHz. The cavity does not support the lower-frequency TM01-like mode. Higher-order modes are damped effectively by removing rods from the lattice so that only the operating mode is supported with a high quality factor. The TM02 cavity mitigates the high pulsed heating of the copper surface seen in some metal-rod TM01 PBG cavities, which may be an advantage for high-gradient operation. We discuss plans for testing a 17 GHz TM02 standing-wave cavity at gradients above 100 MV/m.
 
 
MOP046 RF Breakdown Studies Using Pressurized Cavities cavity, simulation, pick-up, plasma 184
 
  • R. Sah, A. Dudas, R.P. Johnson, M.L. Neubauer
    Muons, Inc, Batavia, USA
  • M. BastaniNejad, A.A. Elmustafa
    Old Dominion University, Norfolk, Virginia, USA
  • J.M. Byrd, D. Li
    LBNL, Berkeley, California, USA
  • M.E. Conde, W. Gai
    ANL, Argonne, USA
  • A. Moretti, M. Popovic, K. Yonehara
    Fermilab, Batavia, USA
  • D. Rose
    Voss Scientific, Albuquerque, New Mexico, USA
 
  Funding: Supported in part by USDOE STTR Grant DE-FG02-08ER86352 and FRA DOE Contract DE-AC02-07CH11359
Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved, and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Recent studies have shown that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas without the need for long conditioning times, because the dense gas can dramatically reduce dark currents and multipacting. In this project we use this high pressure technique to suppress effects of residual gas and geometry found in evacuated cavities to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of radiofrequency and surface preparation. A 1.3-GHz RF test cell with replaceable electrodes (e.g. Mo, Cu, Be, W, and Nb) has been built, and a series of detailed experiments is planned at the Argonne Wakefield Accelerator. These experiments will be followed by additional experiments using a second test cell operating at 402.5 MHz.
 
 
MOP086 Fabrication of a Prototype Micro-Accelerator Platform laser, electron, coupling, simulation 259
 
  • J. Zhou, J.C. McNeur, G. Travish
    UCLA, Los Angeles, USA
  • R.B. Yoder
    Manhattanville College, Purchase, New York, USA
 
  Funding: Work supported by U.S. Defense Threat Reduction Agency, Grant no. HDTRA1-09-1-0043.
The Micro-Accelerator Platform is a laser powered particle acceleration device made from dielectric materials. Its main building blocks, distributed Bragg reflectors and nanoscale coupling slots are fabricated using cutting-edge nanofabrication techniques. In this report, a prototype device will be presented, and technical details with fabrication will be discussed. Optical property of the DBR films is measured by ellipsometry, and film surface roughness is measured using profilometer. In addition, a few remaining challenges with manufacture of this device will be discussed.
 
 
MOP096 Fabrication and Measurement of Dual Layer Silica Grating Structures for Direct Laser Acceleration laser, acceleration, alignment, simulation 280
 
  • E.A. Peralta, R.L. Byer
    Stanford University, Stanford, California, USA
  • E.R. Colby, R.J. England, C. McGuinness, K. Soong
    SLAC, Menlo Park, California, USA
 
  Funding: Department of Energy: DE-AC02-76SF00515(SLAC),DE-FG06-97ER41276
We present our progress in the fabrication and measurement of a transmission-based dielectric double-grating accelerator structure. The structure lends itself to simpler coupling to the accelerating mode in the waveguide with negligible group velocity dispersion effects, allowing for operation with ultra-short (fs) laser pulses. This document describes work being done at the Stanford Nanofabrication Facility to create a monolithic guided-wave structure with 800 nm period gratings separated by a fixed sub-wavelength gap using standard optical lithographic techniques on a fused silica substrate. An SEM and other characterization tools were used to measure the fabrication deviations of the grating geometry and simulations were carried out in MATLAB and HFSS to study the effects of such deviations on the resulting accelerating gradient.
 
 
MOP115 Progress on Multipactor Studies in Dielectric-Loaded Accelerating Structures multipactoring, electron, simulation, impedance 310
 
  • S.P. Antipov, C.-J. Jing, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • D.S. Doran, W. Gai, J.G. Power
    ANL, Argonne, USA
  • B. Feng
    IIT, Chicago, Illinois, USA
 
  Funding: DOE SBIR
Significant progress has been made in the development of high gradient rf driven dielectric accelerating structures (DLA). One principal effect limiting further advances in this technology is the problem of multipactor. The fraction of the power absorbed at saturation in DLA experiments was found to increase with the incident power, with more than 30% of the incident power per unit length being absorbed. We studied a possibility of multipactor mitigation by introduction of surface grooves (transverse and longitudinal) to interrupt the resonant trajectories of electrons in the multipactor discharge. Four DLA structures based on quartz tubes with transverse and longitudinal grooves of various dimensions were designed. In this paper we report simulation results and plans for high-power tests of these structures.
 
 
MOP157 Testing a GAAS Cathode in SRF Gun gun, electron, cathode, SRF 388
 
  • E. Wang, I. Ben-Zvi, A. Burrill, J. Kewisch, T. Rao, Q. Wu
    BNL, Upton, Long Island, New York, USA
  • D. Holmes
    AES, Medford, NY, USA
 
  Funding: Work supported by Brookhaven science Associates, LLC Contract No.DE-AC02-98CH10886 with the U.S.DOE
RF electron guns with a strained superlattice GaAs cathode are expected to generate polarized electron beams of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode’s surface and lower cathode temperature. We plan to install a bulk GaAs:Cs in a SRF gun to evaluate the performance of both the gun and the cathode in this environment. The status of this project is: In our 1.3 GHz 1⁄2 cell SRF gun, the vacuum can be maintained at nearly 10-12 Torr because of cryo-pumping at 2K. With conventional activation of bulk GaAs, we obtained a QE of 10% at 532 nm, with lifetime of more than 3 days in the preparation chamber and have shown that it can survive in transport from the preparation chamber to the gun. The beam line has been assembled and we are exploring the best conditions for baking the cathode under vacuum. We report here the progress of our test of the GaAs cathode in the SRF gun.
 
 
MOP192 NSLS-II BPM System Protection from Rogue Mode Coupling shielding, multipole, radiation, synchrotron 450
 
  • A. Blednykh, B. Bacha, A. Borrelli, M.J. Ferreira, C. Hetzel, H.-C. Hseuh, B.N. Kosciuk, S. Krinsky, O. Singh, K. Vetter
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by DOE contract DE-AC02-98CH10886
Rogue mode RF shielding has been successfully designed and implemented into the production multipole vacuum chambers. In order to avoid systematic errors in the NSLS-II BPM system we introduced frequency shift of HOM's by using RF metal shielding located in the antechamber slot of each multipole vacuum chamber. To satisfy the pumping requirement the face of the shielding has been perforated with roughly 50 percent transparency. It stays clear of synchrotron radiation in each chamber.
 
 
MOP205 NSLS-II Injection Straight Diagnostics injection, septum, kicker, diagnostics 477
 
  • I. Pinayev, A. Blednykh, M.J. Ferreira, R.P. Fliller, B.N. Kosciuk, T.V. Shaftan, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  The ultra-bright light source being developed by the NSLS-II project will utilize top-up injection and fine tuning of the injection process is mandatory. In the paper we present the diagnostics installed on the injection straight. Its usage for commissioning and tuning of the injection cycle is also described.  
 
MOP206 Calibration and Performance of a Secondary Emission Chamber as a Beam Intensity Monitor ion, proton, electron, heavy-ion 480
 
  • M. Sivertz, I.-H. Chiang, A. Rusek
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and with support of NASA.
We report on a study of the behavior of a secondary emission chamber (SEC). We show the dependence of the SEC signal on the charge and velocity of the primary beam for beams of protons, and heavy ions including Helium, Neon, Chlorine and Iron. We fill the SEC with a selection of different gases including Hydrogen, Helium, Nitrogen, Argon, and air, studying the SEC response when it is acting as an ion chamber. We also investigate the behavior of the SEC at intermediate pressures between 10-8 torr and atmospheric pressure.
 
 
MOP210 Residual Gas Fluorescence Monitor at RHIC ion, emittance, injection, heavy-ion 492
 
  • T. Tsang, D.M. Gassner
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work was supported by U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
A residual gas fluorescence beam profile monitor at the relativistic heavy ion collider (RHIC) has successfully recorded vertical beam sizes of Au-ion beams from 3.85 to 100 GeV/n during the 2010 beam runs. Although the fluorescence cross section of Au-ion is sufficiently large, the low residual gas in a typical vacuum chamber of <10-9 torr produces necessary weak fluorescence photons. However, with adequate CCD exposure time, the vertical beam profiles are captured to provide an independent measurement of the RHIC beam size and emittance. This beam diagnostic technique, utilizing the Au-ion beam induced fluorescence from residual gas where hydrogen is still the dominant constituent in nearly all vacuum system, represents a step towards the realization of a truly noninvasive beam monitor for high-energy particle beams.
 
 
MOP222 Operational Use of Ionization Profile Monitors in the Fermilab Main Injector antiproton, injection, proton, controls 519
 
  • D.K. Morris, P. Adamson, D. Capista, I. Kourbanis, T. Meyer, K. Seiya, D. Slimmer, M.-J. Yang, J.R. Zagel
    Fermilab, Batavia, USA
 
  Funding: Operated by the Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Ionization profile monitors (IPMs) are used in the Fermilab Main Injector (MI) for injection lattice matching and to measure transverse emittance of the beam during acceleration. The IPMs provide a periodic, non-destructive means for emittance measurements where other techniques are not applicable. As Fermilab is refocusing its attention on the intensity frontier, non-intercepting diagnostics such as IPMs are expected to become even more important. This paper gives an overview of the operational use of IPMs for emittance measurements and injection lattice matching measurements at Fermilab, and summarizes the future plans.
 
 
MOP226 Transverse Emittance and Phase Space Program Developed for Use at the Fermilab A0 Photoinjector emittance, controls, background, cavity 528
 
  • R.M. Thurman-Keup, A.S. Johnson, A.H. Lumpkin, J. Ruan
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The Fermilab A0 Photoinjector is a 16MeV high intensity, high brightness electron Linac developed for advanced accelerator R&D. One of the key parameters for the electron beam is the transverse beam emittance. Here we report on a newly developed MATLAB based GUI program used for transverse emittance measurements using the multi-slit technique. This program combines the image acquisition and post-processing tools for determining the transverse phase space parameters with uncertainties.
 
 
MOP235 LANSCE Wire Scanning Diagnostics Device Prototype linac, diagnostics, proton, acceleration 551
 
  • S. Rodriguez Esparza, Y.K. Batygin, J.D. Gilpatrick, M.E. Gruchalla, A.J. Maestas, C. Pillai, J.L. Raybun, F.D. Sattler, J.D. Sedillo, B.G. Smith
    LANL, Los Alamos, New Mexico, USA
 
  The Accelerator Operations & Technology Division at Los Alamos National Laboratory operates a linear particle accelerator which utilizes 110 wire scanning diagnostics devices to gain position and intensity information of the proton beam. In the upcoming LANSCE improvements, 51 of these wire scanners are to be replaced with a new design, up-to-date technology and off-the-shelf components. This document outlines the requirements for the mechanical design of the LANSCE wire scanner and presents the recently developed linac wire scanner prototype. Additionally, this document presents the design modifications that have been implemented into the fabrication and assembly of this first linac wire scanner prototype. Also, this document will present the design for the second and third wire scanner prototypes being developed. These last two prototypes belong to a different section of the particle accelerator and therefore have slightly different design specifications. Lastly, the paper concludes with a plan for future work on the wire scanner development.  
 
MOP239 Commercially Available Transverse Profile Monitors, the IBIS target, optics, diagnostics, impedance 562
 
  • M. Ruelas, R.B. Agustsson, I. Bacchus, A.Y. Murokh, R. Tikhoplav
    RadiaBeam, Santa Monica, USA
 
  With ever decreasing budgets, shorter delivery schedules and increased performance requirements for pending and future facilities, the need for cost effective yet high quality profile monitors is paramount to future advancement in the accelerator field. While individual facilities are capable of designing and fabricating these often custom devices, this is not always the most efficient or economical route. In response to the lack of commercially available profile monitors, RadiaBeam Technologies has been developing its line of Integrated Beam Imaging System (IBIS) over the past several years. Here, we report on these commercially available profile monitors.  
 
MOP269 Design of Longitudinal Feedback Kicker for HLS Storage Ring kicker, cavity, storage-ring, impedance 612
 
  • W. Xu, D.H. He
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • W. Wu, Y.K. Wu
    FEL/Duke University, Durham, North Carolina, USA
 
  Hefei Light Source (HLS) is a dedicated synchrotron radiation research facility. It is now undergoing a major upgrade. To obtain a better performance of the light source, a longitudinal feedback system will be developed as part of the upgrade project to cure the coupled bunch mode instabilities. In this work, we present a design of the LFB kicker, a waveguide overloaded cavity with two input and two output ports. The cavity design specifications include a central frequency of 969 MHz (4.75 RF frequency), a bandwidth of more than 100 MHz, and a high shunt impedance of 1200 Ω. A study is carried out to find the dependence of the cavity performance on a few critical geometric parameters of the cavity. Since the shape of the vacuum chamber of the HLS storage ring is octagon, a transition from a circular vacuum chamber to an octagon one is built into the end pieces of the cavity to minimize the total cavity length. To lower the required amplifier power, the structure is optimized to obtain a high shunt impedance. The higher order modes of the kicker cavity are also considered during the design.  
 
TUOBS3 Status of the NSLS-II Project storage-ring, injection, radiation, photon 732
 
  • F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  NSLS-II, the new 3 GeV 3rd generation light source presently under construction at Brookhaven National Laboratory will provide ultra-bright synchrotron radiation of 1021 photons s-1 mm-2 mrad-2 0.1% BW-1 at 2keV and high photon flux of 1015 photons s-1 0.1% BW-1. The facility will support a minimum of 60 beamlines. Construction started in 2009 and commissioning is expected to be completed in 2014. This report will provide a description of the NSLS-II design and will summarize the status of the construction project.  
slides icon Slides TUOBS3 [7.560 MB]  
 
TUOBS4 Challenge of MAX IV Towards a Multi-Purpose Highly Brilliant Light Source linac, emittance, lattice, storage-ring 737
 
  • M. Eriksson, J. Ahlbäck, Å. Andersson, M.A.G. Johansson, D. Kumbaro, S.C. Leemann, C. Lenngren, P. Lilja, F. Lindau, L.-J. Lindgren, L. Malmgren, J.H. Modéer, R. Nilsson, M. Sjöström, J. Tagger, P.F. Tavares, S. Thorin, E.J. Wallén, S. Werin
    MAX-lab, Lund, Sweden
  • B. Anderberg
    AMACC, Uppsala, Sweden
  • L.O. Dallin
    CLS, Saskatoon, Saskatchewan, Canada
 
  A design study of the MAX-IV light source complex in Sweden has been completed. One of MAX-IV's main light sources, a 3 GeV storage ring, is designed to achieve a natural emittance of ~0.2 nm rad. The facility will also provide SASE-XFEL using a 3 GeV high performance linear accelerator. The speaker will discuss facility targets, the concept and accelerator design, and show some possibilities approaching two-dimensional diffraction-limited X-ray generation at MAX-IV.  
slides icon Slides TUOBS4 [6.719 MB]  
 
TUOCS4 Upgrade of Accelerator Complex at Pohang Light Source Facility (PLS-II) emittance, storage-ring, linac, insertion 772
 
  • K.R. Kim, H.-S. Kang, C. Kim, D.E. Kim, S.H. Kim, S.-C. Kim, H.-G. Lee, J.W. Lee, S.H. Nam, C.D. Park, S.J. Park, S. Shin
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: This upgrade project of PLS-II is supported by MEST, in Korea
In order to meet the domestic Korean synchrotron user’s requirements demanding high beam stability and extended photon energies, PLS-II upgrade program has been launched in January 2009 through a 3-year project plan. PLS-II storage ring is newly designed a modified achromatic version of Double Bend Achromat (DBA) to achieve almost twice as many straight sections as the current PLS (TBA) with a design goal of the natural emittance of 5.8 nm·rad, 3.0 GeV beam energy and 400 mA beam current. In the PLS-II, the top-up injection using full energy linac of 3.0 GeV beam energy will be routinely operated for higher stable photon beam as well and therefore the production of hard x-ray undulator radiation of 8 to13 keV is anticipated to allow for more competitive scientific research activities namely x-ray bio-imaging and protein crystallography.
 
slides icon Slides TUOCS4 [17.914 MB]  
 
TUODN1 CSR Fields From Using a Direct Numerical Solution of Maxwell's Equations radiation, synchrotron, synchrotron-radiation, dipole 784
 
  • A. Novokhatski
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.
We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell’s equations together with Newton’s equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particle accelerators and ultrafast coherent light sources.
 
slides icon Slides TUODN1 [8.690 MB]  
 
TUP017 Conceptual Design for the ARIEL 300 keV Electron Gun gun, electron, cathode, high-voltage 847
 
  • C.D. Beard, F. Ames, S. Austen, R.A. Baartman, Y.-C. Chao, K. Fong, C. Gong, N. Khan, S.R. Koscielniak, A. Laxdal, R.E. Laxdal, C.D.P. Levy, D. Louie, J. Lu, L. Merminga, A.K. Mitra, D. Rowbotham, P. Vincent, D. Yosifov
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • C.K. Sinclair
    CLASSE, Ithaca, New York, USA
 
  The Advanced Rare Isotope Laboratory (ARIEL) at TRIUMF is a facility that will augment existing programs at ISAC. ARIEL was funded in July 2010. Products from the complementary methods of proton-driven and bremsstrahlung-driven fission will be available for nuclear and materials science. Equipment for the photofission driver is the subject of this paper: a high-intensity electron beam provided by a high-voltage electron source (or e-gun) will be accelerated in a superconducting linear accelerator, and guided to a γ-ray convertor and actinide target assembly. The electron source is a 10 mA 300 keV thermionic gun, with a control grid for modulation of the beam. This paper describes the conceptual design of the gun, and highlights some of the progress made in the engineering design. First beam from the gun is anticipated in early 2012.  
 
TUP031 Project X Elliptical Cavity Structural Analyses cavity, simulation, linac, cryomodule 868
 
  • E.N. Zaplatin
    FZJ, Jülich, Germany
 
  Project X is proposed at Fermi National Accelerator Laboratory high-intensity proton accelerator complex that could provide beam for a variety of physics projects. Superconducting resonators will be used for beam acceleration. Here we report a structural design of elliptical cavities with resonance frequency 650 MHz and β=0.91 and 0.61. Since there is a concern that the pressure in the helium plumbing will not be stable when the cryomodules are connected to the liquid helium supply and helium gas returns it is necessary to provide the cavity stiffening with requirements of 15 Hz amplitude frequency shift. The cavity RF and mechanical properties are investigated. The calculations of the cavity frequency shift with pressure for different schemes of cavity stiffening were provided. The criterion for the optimization was the minimization of a resonant frequency dependence on an external pressure. Based on the results of these simulations several options on cavity stiffening have been proposed. Additionally, the cavity stiffening structural scheme for self-compensation of resonator detuning caused by external pressure fluctuation have been investigated.  
 
TUP032 Development of 1.3 GHz Prototype Niobium Single Cell Superconducting Cavity Under IIFC Collaboration cavity, niobium, controls, electron 871
 
  • A. Puntambekar, M. Bagre, J. Dwivedi, P.D. Gupta, R.K. Gupta, S.C. Joshi, G.V. Kane, R.S. Sandha, S.D. Sharma, P. Shrivastava
    RRCAT, Indore (M.P.), India
  • C.A. Cooper, M.H. Foley, T.N. Khabiboulline, C.S. Mishra, J.P. Ozelis, A.M. Rowe, G. Wu
    Fermilab, Batavia, USA
  • V. Jain
    IIT, Mumbai, India
  • D. Kanjilal, K.K. Mistri, P.N. Potukuchi, J. Sacharias
    IUAC, New Delhi, India
  • V.C. Sahni
    Homi Bhbha National Institute (HBNI), DAE, Mumbai, India
 
  Under Indian Institutions Fermilab collaboration (IIFC), Raja Ramanna Centre for Advanced Technology (RRCAT) Indore, Inter University Accelerator Centre (IUAC) New Delhi and Fermi National Accelerator Laboratory (FNAL) have developed two prototype 1.3 GHz niobium single cell superconducting cavities. Development of forming tools, forming of half cells, machining of components, development of welding fixtures along with RF & vacuum qualification were carried out at RRCAT. The electron beam welding was carried out at IUAC. The fabricated prototype cavities were tested for RF and vacuum leak tightness up to 77 K at RRCAT before shipment to FNAL. Processing, consisting of CBP, EP, and heat treatment was carried out jointly by FNAL and Argonne National Laboratory in USA. Both the prototype cavities were tested at 2 K in the VTS facility at FNAL and have achieved the accelerating gradient of ~ 19 to 21 MV/m with Q > 1.5 ·10+10. This paper will report the developmental efforts carried out in tooling, forming, machining, welding & various qualification procedures adopted. The paper will also present the processing and the 2 K test results.  
 
TUP033 Engineering Design of Vertical Test Stand Cryostat cavity, shielding, radiation, instrumentation 874
 
  • S.K. Suhane, S. Das, P.D. Gupta, S.C. Joshi, P.K. Kush, S. Raghvendra, N.K. Sharma
    RRCAT, Indore (M.P.), India
  • R.H. Carcagno, C.M. Ginsburg, C.S. Mishra, J.P. Ozelis, R. Rabehl, C. Sylvester
    Fermilab, Batavia, USA
  • V.C. Sahni
    Homi Bhbha National Institute (HBNI), DAE, Mumbai, India
 
  Under Indian Institutions and Fermilab collaboration Raja Ramanna Centre for Advanced Technology and Fermi Lab are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities. The VTS cryostat has been designed for a large testing aperture of 34 inches for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Project-X at FNAL and for VTS facility at RRCAT. VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN2) shield and vacuum vessel with external magnetic shield. . The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV code and FEA. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel, at the cavity surface <10 mG. Thermal analysis for LN2 shield has been performed to check the effectiveness of LN2 cooling.  
 
TUP049 Vacuum Arcs and Gradient Limits plasma, cavity, ion, RF-structure 895
 
  • J. Norem, Z. Insepov
    ANL, Argonne, USA
  • A. Moretti
    Fermilab, Batavia, USA
 
  Funding: DOE/OHEP
We have been extending and refining our model of vacuum breakdown and gradient limits and will describe recent developments. The model considers a large number of mechanisms but finds that vacuum arcs can be described fairly simply and self consistently, however simulations of individual mechanisms can be, in some cases, involved. Although based on accelerator rf data, we believe our model of vacuum arcs should have general applicability.
 
 
TUP054 Mechanical Design of 56 MHz Superconducting RF Cavity for RHIC Collider cavity, SRF, niobium, resonance 907
 
  • C. Pai, I. Ben-Zvi, A. Burrill, X. Chang, G.T. McIntyre, R. Than, J.E. Tuozzolo, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A 56 MHz Superconducting RF Cavity operating at 4.4K is being constructed for the RHIC collider. This cavity is a quarter wave resonator with beam transmission along the centreline. This cavity will increase collision luminosity by providing a large longitudinal bucket for stored bunches of RHIC ion beam. The major components of this assembly are the niobium cavity with the mechanical tuner, its titanium helium vessel and vacuum cryostat, the support system, and the ports for HOM and fundamental dampers. The cavity and its helium vessel must meet the ASME pressure vessel code and it must not be sensitive to frequency shift due to pressure fluctuations from the helium supply system. Frequency tuning achieved by a two stage mechanical tuner is required to meet performance parameters. This tuner mechanism pushes and pulls the tuning plate in the gap of niobium cavity. The tuner mechanism has two separate drive systems to provide both coarse and fine tuning capabilities. This paper discusses the design detail and how the design requirements are met.
 
 
TUP055 Design and Preliminary Test of the 1500 MHz NSLS-II Passive Superconducting RF Cavity cavity, HOM, cryomodule, niobium 910
 
  • J. Rose, W.K. Gash, B.N. Kosciuk, V. Ravindranath, S.K. Sharma, R. Sikora, N.A. Towne
    BNL, Upton, Long Island, New York, USA
  • C.H. Boulware, T.L. Grimm, C. Krizmanich, B. Kuhlman, N. Miller, B. Siegel, M.J. Winowski
    Niowave, Inc., Lansing, Michigan, USA
 
  NSLS-II is a new ultra-bright 3 GeV 3rd generation synchrotron radiation light source. The performance goals require operation with a beam current of 500mA and a bunch current of at least 0.5mA. Ion clearing gaps are required to suppress ion effects on the beam. The natural bunch length of 3mm is planned to be lengthened by means of a third harmonic cavity in order to increase the Touschek limited lifetime. Earlier work described the design alternatives and the geometry selected for a copper prototype. We subsequently have iterated the design to lower the R/Q of the cavity and to increase the diameter of the beam pipe ferrite HOM dampers to reduce the wakefield heating. A niobium cavity and full cryomodule including LN2 shield, magnetic shield and insulating vacuum vessel have been fabricated and installed.  
 
TUP061 FPC Conditioning Cart at BNL gun, controls, klystron, cavity 928
 
  • W. Xu, Z. Altinbas, S.A. Belomestnykh, I. Ben-Zvi, A. Burrill, S. Deonarine, D.M. Gassner, J.P. Jamilkowski, P. Kankiya, D. Kayran, N. Laloudakis, L. Masi, G.T. McIntyre, D. Pate, D. Phillips, T. Seda, A.N. Steszyn, T.N. Tallerico, R.J. Todd, D. Weiss, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • M.D. Cole, G.J. Whitbeck
    AES, Medford, NY, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The 703MHz superconducting gun will have 2 fundamental power couplers (FPCs). Each FPC will deliver up to 500kW of RF power. In order to prepare the couplers for high power RF service and process multipacting, the FPCs should be conditioned before they are installed in the gun. A conditioning cart based test stand, which includes a vacuum pumping system, controllable bake-out system, diagnostics, interlocks and data log system has been designed, constructed and commissioned by collaboration of BNL and AES. This paper presents FPC conditioning cart systems and summarizes the conditioning process and results.
 
 
TUP062 Design of Coupler for the NSLS-II Storage Ring Superconducting RF Cavity cavity, coupling, simulation, synchrotron 931
 
  • M. Yeddulla, J. Rose
    BNL, Upton, Long Island, New York, USA
 
  NSLS-II requires four superconducting cavities working at 499.68 MHz. These cavities should support a 500 mA beam current. To operate the cavities in over-damped coupling condition, an External Quality Factor (Qext) of ~ 65000 is required. We have modified the existing coupler for the CESR-B cavity which has a Qext of ~ 200,000 to meet the requirements of NSLS-II. CESR-B cavity has an aperture coupler with a coupler "tongue" connecting the cavity to the waveguide. We have optimized the length, width and thickness of the "tongue" as well as the width of the aperture to increase the coupling using the three dimensional electromagnetic field solver, HFSS. Several possible designs will be presented.  
 
TUP072 High Power Couplers for Project X Linac coupling, linac, cavity, cryomodule 952
 
  • S. Kazakov, M.S. Champion, M. Kramp, Y. Orlov, O. Pronitchev, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Project X, a multi-megawatt proton sources is under development in Fermi National Accelerator Laboratory. The key element of the project is a superconducting (SC) 3GV CW proton liner accelerator (linac). The linac includes 5 types of SC accelerating cavities of three 325 and 650 MHz frequencies. The cavities consumes up to 30 kW average RF power and need proper main couplers. Requirements and approach to the coupler design are discussed in the report. New cost effective schemes of the couplers are described. Results of electrodynamics and thermal simulations are presented.  
 
TUP076 First High Power Pulsed Tests of a Dressed 325 MHz Superconducting Single Spoke Resonator at Fermilab cavity, klystron, linac, resonance 964
 
  • R.L. Madrak, J. Branlard, B. Chase, C. Darve, P.W. Joireman, T.N. Khabiboulline, A. Mukherjee, T.H. Nicol, E. Peoples-Evans, D.W. Peterson, Y.M. Pischalnikov, L. Ristori, W. Schappert, D.A. Sergatskov, W.M. Soyars, J. Steimel, I. Terechkine, V. Tupikov, R.L. Wagner, R.C. Webber, D. Wildman
    Fermilab, Batavia, USA
 
  In the recently commissioned superconducting RF cavity test facility at Fermilab (SCTF), a 325 MHz, β=0.22 superconducting single-spoke resonator (SSR1) has been tested for the first time with its input power coupler. Previously, this cavity had been tested CW with a low power, high Qext test coupler; first as a bare cavity in the Fermilab Vertical Test Stand and then fully dressed in the SCTF. For the tests described here, the design input coupler with Qext ~ 106 was used. Pulsed power was provided by a Toshiba E3740A 2.5 MW klystron.  
 
TUP077 Vibrational Measurements for Commissioning SRF Accelerator Test Facility at Fermilab cryomodule, cavity, cryogenics, quadrupole 967
 
  • M.W. McGee, J.R. Leibfritz, A. Martinez, Y.M. Pischalnikov, W. Schappert
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02- 07CH11359 with the U.S. Department of Energy.
The commissioning of two cryomodule components is underway at Fermilab’s Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule #1 (CM1) and Capture Cavity II (CC2) which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

 
 
TUP079 Cryomodule Design for 325 MHz Superconducting Single Spoke Cavities and Solenoids cryomodule, cavity, solenoid, cryogenics 970
 
  • T.H. Nicol, S. Cheban, R.L. Madrak, F. McConologue, T.J. Peterson, V. Poloubotko, L. Ristori, W. Schappert, I. Terechkine, B.A. Vosmek
    Fermilab, Batavia, USA
 
  Funding: U.S. Department of Energy
The low-beta section of the linac being considered for Project X at Fermilab contains several styles of 325 MHz superconducting single spoke cavities and solenoid based focusing lenses, all operating at 2 K. Each type of cavity and focusing lens will eventually be incorporated into the design of cryomodules unique to various sections of the linac front end. This paper describes the design of a multiple-cavity and solenoid cryomodule being developed to test the function of each of the main cryomodule systems – cryogenic systems and instrumentation, cavity and lens positioning and alignment, conduction-cooled current leads, magnetic shielding, cold-to-warm beam tube transitions, interfaces to interconnecting equipment and adjacent modules, as well as evaluation of overall assembly procedures.
 
 
TUP091 Electromagnetic Design of a Multi-harmonic Buncher for the FRIB Driver Linac linac, ion, rfq, coupling 1000
 
  • J.P. Holzbauer, W. Hartung, F. Marti, Q. Zhao
    NSCL, East Lansing, Michigan, USA
  • E. Pozdeyev
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy under Grant Number DE-FGO2-08ER41553.
The driver linac for the Facility for Rare Isotope Beams (FRIB) at MSU will produce primary beams of ions at ≥200 MeV/u for nuclear physics research. A dc ion beam from an ECR ion source will be pre-bunched upstream of the radio frequency quadrupole linac. A multi-harmonic buncher (MHB) was designed for this purpose, using experience gained with a similar buncher for the ReA3 re-accelerator linac, which is presently being commissioned at MSU. The FRIB MHB resonator operates with three frequencies (40.25 MHz, 80.5 MHz, and 120.75 MHz) to produce an approximately linear sawtooth in the voltage as a function of time. The three resonant frequencies are produced via two quarter-wave resonators with a common gridless gap: one resonator is driven at its fundamental mode at 40.25 MHz and its first higher-order mode (120.75 MHz), while the other is driven only at its fundamental mode of 80.5 MHz. The electromagnetic design of the MHB resonator will be presented, including the electrode design and tuning mechanisms.
 
 
TUP092 Multi-purpose 805 MHz Pillbox RF Cavity for Muon Acceleration Studies cavity, coupling, linac, acceleration 1003
 
  • G.M. Kazakevich, G. Flanagan, R.P. Johnson, M.L. Neubauer, R. Sah
    Muons, Inc, Batavia, USA
  • K.C.D. Chan, A.J. Jason, S.S. Kurennoy, H.M. Miyadera, P.J. Turchi
    LANL, Los Alamos, New Mexico, USA
  • A. Moretti, M. Popovic, K. Yonehara
    Fermilab, Batavia, USA
  • Y. Torun
    IIT, Chicago, Illinois, USA
 
  Funding: Supported by DOE grant DE-FG-08ER86352.
An 805 MHz RF pillbox cavity has been designed and constructed to investigate potential muon beam acceleration and cooling techniques. The cavity can operate in vacuum or under pressure to 100 atmospheres, at room temperature or in an LN2 bath at 77 K. The cavity is designed for easy assembly and disassembly with bolted construction using aluminum seals. The surfaces of the end walls of the cavity can be replaced with different materials such as copper, aluminum, beryllium, or molybdenum, and with different geometries such as shaped windows or grid structures. Different surface treatments such as electro polished, high-pressure water cleaned, and atomic layer deposition are being considered for testing. The cavity has been designed to fit inside the 5-Tesla solenoid in the MuCool Test Area at Fermilab. Performance of the cavity, including initial conditioning and operation in the external magnetic field will be reported.
 
 
TUP095 Adjustable High Power Coax Coupler without Moving Parts solenoid, cavity, insertion, radio-frequency 1009
 
  • M.L. Neubauer, A. Dudas, R. Sah
    Muons, Inc, Batavia, USA
  • R. Nassiri
    ANL, Argonne, USA
 
  An RF power coupler is designed to operate without moving parts. This new concept for an adjustable coupler is applicable to operation at any radiofrequency. CW operation of such a coupler is especially challenging at lower frequencies. The basic component of the coupler is a ferrite tuner. The RF coupler has no movable parts and relies on a ferrite tuner assembly, coax TEE, and double windows to provide a VSWR of better than 1.05:1 and a bandwidth of at least 8 MHz at 1.15:1. The ferrite tuner assembly on the stub end of the coax TEE uses an applied DC magnetic field to change the Qext and the RF coupling coefficient between the RF input and the cavity. Recent work in making measurements of the loss in the ferrite and likely thermal dissipation required for 100 kW CW operation is presented.  
 
TUP108 Summary Report for the C50 Cryomodule Project cryomodule, cavity, accelerating-gradient, electron 1044
 
  • M.A. Drury, G.K. Davis, J.F. Fischer, C. Grenoble, J. Hogan, L.K. King, K. Macha, J.D. Mammosser, C.E. Reece, A.V. Reilly, J. Saunders, H. Wang
    JLAB, Newport News, Virginia, USA
  • E. Daly, J.P. Preble
    ITER Organization, St. Paul lez Durance, France
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract DE-AC05-06OR23177.
The Thomas Jefferson National Accelerator Facility has recently completed the C50 cryomodule refurbishment project. The goal of this project was to enable robust 6 GeV, 5 pass operation of the Continuous Electron Beam Accelerator Facility (CEBAF). The scope of the project included removal, refurbishment and reinstallation of ten CEBAF cryomodules at a rate of three per year. The refurbishment process included reprocessing of SRF cavities to eliminate field emission and to increase the nominal gradient from the original 5 MV/m to 12.5 MV/m. New “dogleg“ couplers were installed between the cavity and helium vessel flanges to intercept secondary electrons that produce arcing in the fundamental Power Coupler (FPC). Other changes included new ceramic RF windows for the air to vacuum interface of the FPC and improvements to the mechanical tuner. Damaged or worn components were replaced as well. All ten of the refurbished cryomodules are now installed in CEBAF and are currently operational. This paper will summarize the performance of the cryomodules. This paper will also look at problems that must be addressed by future refurbishment projects.
The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.
 
 
TUP109 Fabrication, Treatment and Testing of a 1.6 Cell Photo-injector Cavity for HZB cavity, electron, cathode, linac 1047
 
  • P. Kneisel
    JLAB, Newport News, Virginia, USA
  • T. Kamps, J. Knobloch, O. Kugeler, A. Neumann
    HZB, Berlin, Germany
  • R. Nietubyc
    The Andrzej Soltan Institute for Nuclear Studies, Centre Swierk, Swierk/Otwock, Poland
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
 
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177..
As part of a CRADA (Cooperative Research and Development Agreement) between Forschungszentrum Dresden (FZD) and JLab we have fabricated and tested after appropriate surface treatment a 1.5 cell, 1300 MHz RRR niobium photo-injector cavity to be used in a demonstration test at BESSY*. Following a baseline test at JLab, the cavity received a lead spot coating of ~8 mm diameter deposited with a cathode arc at the Soltan Institute on the endplate made from large grain niobium. It had been demonstrated in earlier tests with a DESY built 1.5 cell cavity – the original design – that a lead spot of this size can be a good electron source, when irradiated with a laser light of 213 nm . In the initial test with the lead spot we could measure a peak surface electric field of ~ 29 MV/m; after a second surface treatment, carried out to improve the cavity performance, but which was not done with sufficient precaution, the lead spot was destroyed and the cavity had to be coated a second time. This contribution reports about the experiences and results obtained with this cavity.
* A. Neumann et al., “CW Superconducting RF Photoinjector Development for Energy Recovery Linacs”, LINAC10, September 13-17, 2010, Tsukuba, Japan.
 
 
TUP111 Multipactoring Observation, Simulation and Suppression on a Superconducting TE011 Cavity cavity, simulation, electron, ion 1050
 
  • H. Wang, G. Ciovati
    JLAB, Newport News, Virginia, USA
  • L. Ge, Z. Li
    SLAC, Menlo Park, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and COMPASS of SciDAC No.
A superconducting cavity of the same shape as used for the development of superconducting photo injectors has been built for the studies of high magnetic field induced Q slope due to the local heating. The multipactoring problem has been observed on the TE011 mode, 3.3GHz with magnetic field barriers. To understand and overcome this problem, 3D multipactoring simulations by Omega3P and Track3P have been done and found these to be one-point multipactors pulled out from the flat bottom surface by finite normal component of electric field. Asymmetric coupling ports on the side of the beam tube could have caused the distortion of the TE011 mode. The thermometry measurement later confirmed the predicted impact locations. A structure modification has been adopted based on the simulation prediction. More experimental results with the new geometry will allow further comparison with the 3D multipactoring simulations.
 
 
TUP129 Simulation Results of RF Coupler Controllable by Dielectric Fluid coupling, simulation, cavity, impedance 1073
 
  • P. Chen, D. Yu
    DULY Research Inc., Rancho Palos Verdes, California, USA
 
  Funding: Work supported by DOE SBIR Phase I grant No. DE-FG02-09ER85334.
Tunable couplers for adjusting radiofrequency (RF) power coupling into accelerator cavities are useful devices for achieving optimal operation efficiency. Standard mechanical tuners currently used in large accelerator facilities are bulky and complicated. A novel tuner, based on the introduction of dielectric tubes or fluid-filled volumes adjacent to, but separated by window(s) from the coupler, is described. Simulations have shown that the tuner has a fairly large adjustment range and also demonstrated the viability of the tuning concept using fluid circuit.
 
 
TUP139 Initial High Power Test Results of an X-band Dual-moded Coaxial Cavity cavity, resonance, coupling, factory 1094
 
  • F. Wang, C. Adolphsen, C.D. Nantista
    SLAC, Menlo Park, California, USA
 
  To understand the rf breakdown phenomenon better, an x-band coaxial dual-moded cavity is designed. It is independently excited two modes from two sources. One mode will generator pulsed heating in the inner conductor and the other one will concentrate peak electric field. By observing the breakdown rate and damage on the surface for different electric to magnetic field ratios, we hope to reproduce the limiting RF field effects seen in various accelerator structure, waveguides and klystrons. The initial high power test has been done in SLAC. The experiment results will be discussed in the paper together with future experiments.  
 
TUP162 Engineering Design of HTS Quadrupole for FRIB radiation, quadrupole, pick-up, factory 1124
 
  • J.P. Cozzolino, M. Anerella, A.K. Ghosh, R.C. Gupta, W. Sampson, Y. Shiroyanagi, P. Wanderer
    BNL, Upton, Long Island, New York, USA
  • A. Zeller
    FRIB, East Lansing, Michigan, USA
 
  Funding: Supported by the U.S. Department of Energy under Contract DE-AC02-98CH10886 and under Cooperative Agreement DE-SC0000661 from DOE-SC that provides financial assistance to MSU for FRIB.
The coils of the first quadrupole in the fragment separator region of the Facility for Rare Isotope Beams (FRIB) must withstand an intense level of radiation and accommodate a very high heat load. Magnets produced with High Temperature Superconductors (HTS) are especially suitable in such an environment. The proposed design employs second generation (2G) HTS, permitting operation at ~50K. The engineering considerations this design are summarized. The goal has been to engineer a compact, readily producible magnet with a warm bore and yoke, made from radiation-resistant materials, capable of operating within the heat load limit, whose four double-layered coils will be adequately restrained under high radial Lorentz forces. Results of ANSYS finite element thermal and structural analyses of the coil clamping system are presented. Coil winding, lead routing and splicing, magnet assembly as well as remote tunnel installation/removal considerations are factored into this design and will also be discussed.
 
 
TUP165 Design, Construction and Test of Cryogen-Free HTS Coil Structure instrumentation, quadrupole, superconducting-magnet, radiation 1133
 
  • H.M. Hocker, M. Anerella, R.C. Gupta, S.R. Plate, W. Sampson, J. Schmalzle, Y. Shiroyanagi
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the U.S. Dept. of Energy under Contract No. DE-AC02-98CH10886 & under Coop. Agreement DE-SC0000661 from DOE-SC that provides financial assistance to MSU to design and establish FRIB
This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconducting magnets.
 
 
TUP175 Fabrication of the Jefferson Laboratory Cryogenic Control Reservoirs cryogenics, controls, superconducting-magnet, FEL 1157
 
  • M.L. Seely, E.C. Bonnema, D.J. Carvelli, E.K. Cunningham, E.C. Kasper, G.D. Korecky
    Meyer Tool & MFG, Oak Lawn, Illinois, USA
 
  Meyer Tool and Manufacturing of Oak Lawn IL is manufacturing six Cryogenic Control reservoirs CCRs) for the Jefferson Laboratory. Five of the CCRs will be installed in the new Super High Momentum Spectrometer (SHMS) planned for Jefferson Lab's Hall C and the sixth will be installed in Hall D. Both projects are part of the 12 GeV upgrade to the CEBAF accelerator . The CCRs are a cryogenic distribution box designed by the Jefferson Laboratory. They include internal reservoirs in order to provide a continuous supply liquid helium and liquid nitrogen to magnets through periods of disruption in the external supply. This paper discusses the manufacturing and process measures that were implemented in order to meet the Department of Energy requirements for pressure vessels (10CFR851 Appendix A Part 4), to eliminate brazing flux contamination, and to reduce weld distortion in multiple internal vessels. The CCRs will undergo pressure and vacuum testing at Meyer Tool before being installed by the magnet manufacturer.  
 
TUP216 Design of a Helium Phase Separator with Condenser cryogenics, radiation, synchrotron, synchrotron-radiation 1214
 
  • F. Z. Hsiao, T.Y. Huang, C.P. Liu, H.H. Tsai
    NSRRC, Hsinchu, Taiwan
 
  This paper presents the design of a helium phase separator with volume of 100 litres. A condenser using a cryocooler for cooling is built into the phase separator to save liquid helium consumption during the test period. The heat loss to the 4.2 K inner vessel is confined within 1W due to the limited 1.5W cooling capacity from the cryocooler. Analysis of mechanical strength and heat load is illustrated.  
 
TUP219 Temperature-Dependent Calibration of Hall Probes at Cryogenic Temperature alignment, undulator, photon, cryogenics 1223
 
  • M. Abliz, C.L. Doose, Y. Ivanyushenkov, I. Vasserman
    ANL, Argonne, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Short-period superconducting undulators (SCUs) are presently being developed for the Advanced Photon Source. Field measurements of the SCUs will be performed at 4.2 K and near 300 K, so temperature-dependent calibration of the Hall probes is necessary. The sensitivity of the Hall probes has been measured at temperatures from 5 K to 320 K over a magnetic field range of ␣1.5 T. It was found that the sensitivity increased as the temperature decreased from 300 K to about 150 K. A specially designed probe assembly, with three Hall sensors for measuring both the horizontal and vertical field components, has been calibrated. The techniques for doing the calibration and the measurement results at various temperatures will be presented.
 
 
TUP221 Helium Pressures in RHIC Vacuum Cryostats and Relief Valve Requirements from Magnet Cooling Line Failure simulation, dipole, injection, quadrupole 1229
 
  • C.J. Liaw, R. Than, J.E. Tuozzolo
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A catastrophic failure of the RHIC magnet cooling lines, similar to the LHC superconducting bus failure incident, would pressurize the insulating vacuum in the magnet and transfer line cryostats. Insufficient relief valves on the cryostats could cause a structural failure. A SINDA/FLUINT® model, which simulated the 4.5K/ 4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the vacuum cryostat and discharging via the reliefs into the RHIC tunnel, had been developed to calculate the helium pressure inside the cryostat. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces were included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Existing relief valve sizes were reviewed to make sure that the maximum stresses, caused by the calculated maximum pressures inside the cryostats, did not exceed the allowable stresses, based on the ASME Code B31.3 and ANSYS results.
 
 
TUP222 Helium Release Rates and ODH Calculations from RHIC Magnet Line Cooling Line Failure simulation, injection, controls, collider 1232
 
  • C.J. Liaw, R. Than, J.E. Tuozzolo
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A catastrophic failure of the magnet cooling lines, similar to the LHC superconducting bus failure incident, could discharge cold helium into the RHIC tunnel and cause an Oxygen Deficiency Hazard (ODH) problem. A SINDA/FLUINT® model, which simulated the 4.5K/ 4 atm helium flowing through the magnet cooling system distribution lines, then through a line break into the insulating vacuum volumes and discharging via the reliefs into the RHIC tunnel, had been developed. Arc flash energy deposition and heat load from the ambient temperature cryostat surfaces are included in the simulations. Three typical areas: the sextant arc, the Triplet/DX/D0 magnets, and the injection area, had been analyzed. Results, including helium discharge rates, helium inventory loss, and the resulting oxygen concentration in the RHIC tunnel area, are reported. Good agreement had been achieved when comparing the simulation results, a RHIC sector depressurization test measurement, and some simple analytical calculations.
 
 
TUP223 Cryogenic System for the Energy Recovery Linac and Vertical Test Facility at BNL cryomodule, cryogenics, cavity, controls 1235
 
  • R. Than, D.L. Lederle, L. Masi, P. Orfin, R. Porqueddu, V. Soria, T.N. Tallerico, P. Talty, Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A small cryogenic system and warm helium vacuum pumping system provides cooling to the Energy Recovery Linac's (ERL) cryomodules, a 5-cell cavity and an SRF gun, and a large Vertical Test Dewar. The system consist of a model 1660S PSI (KPS) plant, a 4000 liter storage dewar, subcooler, wet expander, 50 g/s main helium compressor and 170 m3 storage tank. A system description and operating plan is given of the cryogenic plant and cryomodules
 
 
TUP224 Cryogenic Vertical Test Facility for the SRF Cavities at BNL cryogenics, SRF, shielding, radiation 1238
 
  • R. Than, I. Ben-Zvi, A. Burrill, M.C. Grau, D.L. Lederle, C.J. Liaw, G.T. McIntyre, D. Pate, R. Porqueddu, T.N. Tallerico, J.E. Tuozzolo
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
A vertical facility has been constructed to test SRF cavities and can be utilized for other use. The liquid helium volume for the large vertical dewar is approximate 84 inches tall by 40 inches diameter with a working clear inner diameter of 38 inch with the inner cold magnetic shield system installed. For radiation enclosure, the test dewar is situated inside a concrete block structure. The structure is above ground and is accessible from the top, and has a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth is also available for testing of smaller cavities in 2 smaller dewars.
 
 
TUP225 Overview of Recent Studies and Modifications Being Made to RHIC to Mitigate the Effects of a Potential Failure to the Helium Distribution System cryogenics, controls, factory, feedback 1241
 
  • J.E. Tuozzolo, D. Bruno, A. Di Lieto, G. Heppner, R. Karol, E.T. Lessard, C.J. Liaw, G.T. McIntyre, C. Mi, J. Reich, J. Sandberg, S.K. Seberg, L. Smart, T.N. Tallerico, R. Than, C. Theisen, R.J. Todd, R. Zapasek
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In order to cool the superconducting magnets in RHIC, its helium refrigerator distributes 4.5 K helium throughout the tunnel via a series of distribution and return lines. The worst case for failure would be a release from the magnet distribution line, which operates at 3.5 to 4.5 atmospheres and contains the energized magnet bus. Should the bus insulation system fail or an electrical connection open, there is the potential for releasing up to 70 MJoules of stored energy. Studies were done to determine release rate of the helium and the resultant reduction in O2 concentration in the RHIC tunnel and service buildings. Equipment and components were also reviewed for reliability and the effects of 10 years of operations. Modifications were made to reduce the likelihood of failure and to reduce the amount of helium gas that could be released into tunnels and service buildings while personnel are present. This paper describes the issues reviewed, the steps taken, and remaining work to be done to reduce the hazards.
 
 
TUP227 Status of NSLS-II Storage Ring Vacuum Systems photon, multipole, dipole, radiation 1244
 
  • H.-C. Hseuh, A. Blednykh, L. Doom, M.J. Ferreira, C. Hetzel, J. Hu, S. Leng, C. Longo, V. Ravindranath, K. Roy, S.K. Sharma, F.J. Willeke, K. Wilson, D. Zigrosser
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work performed under the auspices of U.S. Department of Energy, under contract DE-AC02-98CH10886
National Synchrotron Light Source II (NSLS-II), being constructed at Brookhaven National Laboratory, is a 3- GeV, high-flux and high-brightness synchrotron radiation facility with a nominal current of 500 mA. The storage ring vacuum system has extruded aluminium chambers, with ante-chamber for photon fans and distributed NEG strip pumping. Discrete photon absorbers are used to intercept the un-used bending magnet radiation. In-situ bakeout is implemented to achieve fast conditioning during initial commissioning and after interventions.
 
 
TUP228 Design of the EBIS Vacuum System ion, solenoid, controls, electron 1247
 
  • M. Mapes, L. Smart, D. Weiss
    BNL, Upton, Long Island, New York, USA
 
  At Brookhaven National Labratory the Electron Beam Ion Source (EBIS) is presently being commisioned. The EBIS will be a new heavy ion pre-injector for the Realativistic Heavy Ion Collider (RHIC). The new pre-injector has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium. The background pressure in the ionization region of the EBIS should be low enough that it does not produce a significant number of ions from background gas. The pressure in the regions of the electron gun and electron collector can be higher than in the ionization region provided there is efficient vacuum separation between the sections. For injection the ions must be accelerated to 100KV by pulsing the EBIS platform. All associated equipment including the vacuum equipment on the platform will be at a 100KV potential. The vacuum system design and the vacuum controls for the EBIS platform and transport system will be presented as well as the interface with the Booster Ring which has a pressure 10-11 Torr.  
 
TUP229 Implementation and Operation of Electron Cloud Diagnostics for CesrTA electron, diagnostics, pick-up, quadrupole 1250
 
  • Y. Li, J.V. Conway, X. Liu, V. Medjidzade, M.A. Palmer
    CLASSE, Ithaca, New York, USA
 
  Funding: Work Supported by NSF Grant #PHY-0734867 & DOE Grant #DE-FC02-08ER41538
The vacuum system of Cornell Electron Storage Ring (CESR) was successfully reconfigured to support CesrTA physics programs, including electron cloud (EC) build-up and suppression studies. One of key features of the reconfigured CESR vacuum system is the flexibility for exchange of various vacuum chambers with minimized impact to the accelerator operations. This is achieved by creation of three short gate-valve isolated vacuum sections. Over the last three years, many vacuum chambers with various EC diagnostics (such as RFAs, shielded pickups, etc) were rotated through these short experimental sections. With these instrumented test chambers, EC build-up was studied in many magnetic field types, including dipoles, quadrupoles, wigglers and field-free drifts. EC suppression techniques by coating (TiN, NEG and amorphous-C), surface textures (grooves) and clearing electrode are incorporated in these test chambers to evaluate their vacuum performance and EC suppression effectiveness. We present the implementation and operations of EC diagnostics.
 
 
TUP230 In-situ Secondary Electron Yield Measurement System at CesrTA electron, gun, photon, radiation 1253
 
  • Y. Li, J.V. Conway, S. Greenwald, J.-S. Kim, V. Medjidzade, T.P. Moore, M.A. Palmer, C.R. Strohman
    CLASSE, Ithaca, New York, USA
  • D. Asner
    Carleton University, College of Natural Sciences, Ottawa, Ontario, Canada
 
  Funding: Work Supported by NSF Grant #PHY-0734867 & DOE Grant #DE-FC02-08ER41538
Measuring the secondary electron yield (SEY) on technical surfaces in accelerator vacuum systems provides essential information for the study of electron cloud growth and suppression, with application to many accelerator R&D projects. As a part of the CesrTA research program, we developed and deployed an in-situ SEY measurement system. A two-sample SEY system was installed in the CesrTA vacuum system with one sample exposed to direct synchrotron radiation (SR) and the other sample exposed to scattered SR. The SEYs of both samples were measured as a function of the SR dosages. In this paper, we describe the in-situ SEY measurement systems and the initial results on bare aluminum (6061-T6), TiN-coated aluminum, amorphous carbon-coated aluminum, and amorphous carbon-coated copper samples.
 
 
TUP235 Strategy for Neutralizing the Impact of Insertion Devices on the MAX IV 3 GeV Ring storage-ring, multipole, optics, lattice 1262
 
  • E.J. Wallén, S.C. Leemann
    MAX-lab, Lund, Sweden
 
  In order to prepare for the potentially negative influence on the beam lifetime, injection efficiency and beam size from the insertion devices (IDs) on the stored beam of the MAX IV 3 GeV storage ring strategy for neutralizing the foreseen effects of the IDs has been developed. In short the strategy involves a local correction of the betatron phase advance by adjusting the strength of the quadrupoles adjacent to the ID. There will also be a global tune correction in order to avoid drift in the working point of the storage ring during operation. Air coils with empirical feed forward tables for the excitation current in the coils will compensate for field integral errors. The lattice of the MAX IV 3 GeV storage ring appears to be robust and it tolerates the dynamic multipoles created by the expected initial set of IDs provided that the local correction of the betatron phase advance has been carried out.  
 
TUP237 Development of Accurate and Precise In-Vacuum Undulator System undulator, coupling, simulation, radiation 1268
 
  • A. Deyhim, J.D. Kulesza
    Advanced Design Consulting, Inc, Lansing, New York, USA
  • K.I. Blomqvist
    MAX-lab, Lund, Sweden
 
  Typical in-vacuum undulators, especially long ones, have several associated engineering challenges to be accurate and precise; magnetic centerline stability, inner girder hangers, and magnet period to name a few. The following describes these issues in more detail and ADC’s methods solved these critical issues for long in vacuum undulators. ADC has designed, built and delivered Insertion Devices and Magnetic Measurement Systems to such facilities as; MAXLab (EPU, Planar-2, and Measurement System), ALBA and Australian Synchrotron Project (Wiggler), BNL (Cryo In-Vacuum), SSRF (In-Vacuum – 2, and Measurement System), PAL (In-Vacuum and Measurement System), NSRRC (In-Vacuum), and SRC (Planar and EPU). The information presented here uses data from a recent IVU we delivered to PAL. This IVU will be installed at Pohang Accelerator Laboratory (PAL) for U-SAXS (Ultra Small Angle X-ray Scattering) beamline in 2011. The IVU generates undulator radiation up to ~14 keV using higher harmonic (up to 9th) undulator radiation with 2.5 GeV PLS electron beam  
 
TUP248 SC Undulator with the Possibility To Change Its Strength and Polarization by Feeding Current undulator, polarization, radiation, electron 1295
 
  • A.A. Mikhailichenko
    CLASSE, Ithaca, New York, USA
 
  Funding: NSF
We describe the design of optimized undulator with SC windings able to generate the magnetic field of opposite helicities, including an elliptic and a linear ones oriented as desired. For the undulator period 25mm and aperture 8mm, K factor could be changed from zero up to 1.5 by changing the feeding current. Polarization changed by changing the currents in additional helical windings.
 
 
TUP269 Design and Analysis of SRF Cavities for Pressure Vessel Code Compliance cavity, SRF, niobium, electron 1322
 
  • C.M. Astefanous, J.P. Deacutis, D. Holmes, T. Schultheiss
    AES, Medford, NY, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • W. Xu
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work was funded by Stony Brook University under contract number 52702.
Advanced Energy Systems, Inc. is under contract to Stony Brook University to design and build a 704 MHz, high current, Superconducting RF (SRF) five cell cavity to be tested at Brookhaven National Laboratory. This cavity is being designed to the requirements of the SPL at CERN while also considering operation with electrons for a potential RHIC upgrade at Brookhaven. The β=1 cavity shape, developed by Brookhaven, is designed to accelerate 40 mA of protons at an accelerating field of 25 MV/m with a Q0 > 8·109 at 2K while providing excellent HOM damping for potential electron applications. 10-CFR-851 states that all pressurized vessels on DOE sites must conform to applicable national consensus codes or, if they do not apply, provide an equivalent level of safety and protection. This paper presents how the 2007 ASME Boiler and Pressure Vessel Code Section VIII, Division 2 requirements can be used to satisfy the DOE pressure safety requirements for a non-code specified material (niobium) pressure vessel.
 
 
TUP277 RF Design of the Power Coupler for the Spiral2 Single Bunch Selector ion, simulation, kicker, impedance 1346
 
  • F. Consoli, A.C. Caruso, G. Gallo, D. Rifuggiato, E. Zappalà
    INFN/LNS, Catania, Italy
  • M. Di Giacomo
    GANIL, Caen, France
 
  Funding: Work supported by the European Community FP7 – Capacities – SPIRAL2 Preparatory Phase n° 212692.
The single bunch selector of the Spiral2 driver uses high impedance travelling wave electrodes driven by fast pulse generators. The characteristic impedance of 100 Ω has been chosen to reduce the total power, but this non standard value requires the development of custom feed-through and transitions to connect the pulse generators and the matching load to the electrodes. The paper reviews the design of these devices.
 
 
TUP279 A CW RFQ Prototype rfq, simulation, dipole, linac 1352
 
  • U. Bartz, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  A short RFQ prototype was built for tests of high power RFQ structures. We will study thermal effects and determine critical points of the design. HF-simulations with CST Microwave Studio and measurements were done. The RF-tests with continues power of 20 kW/m and simulations of thermal effects with ALGOR were finished successfully. Optimization of some details of the facility are on focus now. First results and the status of the project will be presented.  
 
TUP286 Development and Testing of Carbon Fiber Vacuum Chamber Supports for NSLS-II radiation, alignment, pick-up, laser 1364
 
  • B.N. Kosciuk, C. Hetzel, J.A. Kierstead, V. Ravindranath, S.K. Sharma, O. Singh
    BNL, Upton, Long Island, New York, USA
 
  The NSLS-II Synchrotron Light Source, a 3 GeV electron storage ring currently under construction at Brookhaven National Laboratory is expected to provide exceptional orbit stability in order to fully utilize the very small emittance of the electron beam. In order to realize this, the beam position monitor (BPM) pick up electrodes which are part of the orbit feedback system must have a high degree of mechanical and thermal stability. In the baseline design, this would be accomplished by using flexible invar plates to support the multi-pole vacuum chamber at the positions where the BPM pick up electrodes are mounted. However, it was later discovered that the close proximity of the invar supports to the adjacent focusing magnets had an adverse affect on the magnetic fields. To mitigate this issue, we propose the use of carbon fiber composite in place of invar as a low CTE (coefficient of thermal expansion) material. Here we show the design, development and testing of thermally stable composite supports capable of sub-micron thermal stability.  
 
TUP288 A Very Thin Havar Film Vacuum Window for Heavy Ions to Perform Radiobiology Studies at the BNL Tandem ion, heavy-ion, light-ion, proton 1367
 
  • P. Thieberger, H. Abendroth, J.G. Alessi, L. Cannizzo, C. Carlson, A. Gustavsson, M.G. Minty, L. Snydstrup
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Heavy ion beams from one of the BNL Tandem Van de Graaff accelerators will be made available for radiobiology studies on cell cultures. Energy losses need to be minimized both in the vacuum window and in the air in order to achieve the ranges required for the cells to be studied. This is particularly challenging for ions heavier than iron. The design is presented of a 0.4” diameter Havar film window that will satisfy these requirements. Films as thin as 80μinches were successfully pressure tested. The final thickness to be used may be slightly larger to help in achieving pin hole free windows. We discuss design considerations and present pressure and vacuum test results as well as tests with heavy ion beams.
 
 
TUP290 Progress on MICE RFCC Module for the MICE Experiment cavity, coupling, controls, EPICS 1370
 
  • A.J. DeMello, N. Andresen, M.A. Green, D. Li, S.P. Virostek, M.S. Zisman
    LBNL, Berkeley, California, USA
  • Y. Cao, S. Sun, L. Wang, L. Yin
    SINAP, Shanghai, People's Republic of China
  • A.B. Chen, X.K. Liu, H. Pan, F.Y. Xu
    ICST, Harbin, People's Republic of China
  • M. Reep, D.J. Summers
    UMiss, University, Mississippi, USA
 
  Funding: This work is supported by the Office of Science, United States Department of Energy under DOE contract DE-AC02-05CH11231.
We describe the recent progress on the design and fabrication of the RFCC (RF and Coupling Coil) module for the international Muon Ionization Cooling Experiment (MICE). The MICE cooling channel has two RFCC modules; each has four 201-MHz normal conducting RF cavities and one superconducting solenoid magnet. The magnet is designed to be cooled by three cryocoolers. Fabrication of the RF cavities is complete; design and fabrication of the magnets are in progress. The first magnet is expected to be finished by the end of 2011.
 
 
WEODS3 CEBAF 200 kV Inverted Electron Gun high-voltage, laser, electron, niobium 1501
 
  • J.M. Grames, P.A. Adderley, J. Clark, J. Hansknecht, M. Poelker, M.L. Stutzman, R. Suleiman, K.E.L. Surles-Law
    JLAB, Newport News, Virginia, USA
  • M. BastaniNejad
    Old Dominion University, Norfolk, Virginia, USA
  • J.L. McCarter
    UVa, Charlottesville, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. In addition, DOE-HEP funds this work in support of the ILC R&D program.
Two DC high voltage GaAs photoguns have been built at Jefferson Lab based on a compact inverted insulator design. One photogun provides the polarized electron beam at CEBAF and operates at 130 kV bias voltage. The other gun is used for high average current lifetime studies at a dedicated test facility and has been operated at bias voltage up to 225 kV. The advantages of higher DC voltage for CEBAF include reduced space-charge emittance growth and the potential for prolonged photocathode lifetime. However, a consequence of operating at higher voltages is the increased likelihood of field emission or breakdown, both of which are unacceptable. Highlights of the R&D studies leading toward a production 200keV GaAs photogun for CEBAF will be presented.
 
slides icon Slides WEODS3 [1.360 MB]  
 
WEP076 Masking the Paul Trap Simulator Experiment (PTSX) Ion Source to Modify the Transverse Distribution Function and Study Beam Stability and Collective Oscillations ion, plasma, ion-source, lattice 1618
 
  • E.P. Gilson, R.C. Davidson, P. Efthimion, R. M. Majeski, E. Startsev, H. Wang
    PPPL, Princeton, New Jersey, USA
  • M. Dorf
    LLNL, Livermore, California, USA
 
  Funding: Research supported by the U.S. Department of Energy.
A variety of masks were installed on the Paul Trap Simulator Experiment (PTSX) cesium ion source in order to perform experiments with modified transverse distribution functions. Masks were used to block injection of ions into the PTSX chamber, thereby creating injected transverse beam distributions that were either hollow, apertured and centered, apertured and off-center, or comprising five beamlets. Experiments were performed using either trapped plasmas or the single-pass, streaming, mode of PTSX. The transverse streaming current profiles clearly demonstrated centroid oscillations. Further analysis of these profiles also shows the presence of certain collective beam modes, such as azimuthally symmetric radial modes. When these plasmas are trapped for thousands of lattice periods, the plasma quickly relaxes to a state with an elevated effective transverse temperature and is subsequently stable. Both sinusoidal and periodic step function waveforms were used and the resulting difference in the measured transverse profiles will be discussed.
 
 
WEP102 Current Dependent Tune Shifts in the University of Maryland Electron Ring UMER space-charge, electron, storage-ring, focusing 1668
 
  • D.F. Sutter, B.L. Beaudoin, S. Bernal, M. Cornacchia, R.A. Kishek, T.W. Koeth, P.G. O'Shea
    UMD, College Park, Maryland, USA
 
  Funding: Work supported by the U.S. DOE Offices of High Energy Physics and Fusion Energy Sciences and by the U.S. DOD Office of Naval Research and Joint Technology Office.
The shift in betatron tunes as a function of space charge has been studied in many accelerators and storage rings. Because of its low operating energy (10 keV, γ = 1.02) and wide range of beam currents (0.6 to 100 mA, corresponding respectively to predicted incoherent tune shifts of 1.2 to 5.2), the University of Maryland electron ring (UMER) provides a unique opportunity to study space charge driven tune shifts over a wide parameter space. Comparisons of predictions and measurements are presented, including a discussion of special factors such as the magnetic penetration of the vacuum chamber walls.
 
 
WEP103 Ion Instability Study for the ILC 3 km Damping Ring ion, damping, simulation, emittance 1671
 
  • G.X. Xia
    MPI-P, München, Germany
 
  The ILC GDE is currently pushing the cost reduction for all subsystems of the ILC project for the Technique Design Phase 1. A short damping ring with circumference of 3.2 km was developed for this purpose. Based on this lattice, we performed a weak-strong simulation study of the ion instability in the electron damping ring for various beam parameters and vacuum pressures. The simulation results are given in this paper.  
 
WEP108 Application of Coherent Tune Shift Measurements to the Characterization of Electron Cloud Growth simulation, electron, photon, radiation 1680
 
  • D.L. Kreinick, J.A. Crittenden, G. Dugan, M.A. Palmer, G. Ramirez
    CLASSE, Ithaca, New York, USA
  • M.A. Furman, M. Venturini
    LBNL, Berkeley, California, USA
  • R. Holtzapple, M. Randazzo
    CalPoly, San Luis Obispo, California, USA
 
  Funding: DOE = DE-FC02-08ER41538 NSF = PHY-0734867
Measurements of coherent tune shifts at the Cornell Electron Storage Ring Test Accelerator (CesrTA) have been made for electron and positron beams under a wide variety of beam energies, bunch charge, and bunch train configurations. Comparing the observed tunes with the predictions of several electron cloud simulation programs allows the evaluation of important parameters in these models. These simulations will be used to predict the behavior of the electron cloud in damping rings for future linear colliders. We outline recent improvements to the analysis techniques that should improve the fidelity of the modeling.
 
 
WEP110 Electron Cloud Modeling for the ILC Damping Rings dipole, lattice, photon, electron 1686
 
  • J.A. Crittenden, D. Sagan
    CLASSE, Ithaca, New York, USA
  • K.G. Sonnad
    Cornell University, Ithaca, New York, USA
 
  Funding: Support by DOE contract DE-FC02-08ER41538 and NSF contract PHY-0734867
Electron cloud buildup is a primary concern for the performance of the damping rings under development for the International Linear Collider. We have performed synchrotron radiation profile calculations for the 6.4-km DC04 and 3.2-km DSB3 lattice designs using the SYNRAD utility in the Bmad accelerator software library. These results are then used to supply input parameters to the electron cloud modeling package ECLOUD. Contributions to coherent tune shifts from the field-free sections and from the dipole and quadrupole magnets have been calculated, as well as the effect of installing solenoid windings in the field-free regions. For each element type, SYNRAD provides ring occupancy, average beam sizes, beta function values, and beta-weighted photon rates for the coherent tune shift calculation. An approximation to the antechamber design has been implemented in ECLOUD as well, moving the photoelectron source point to the edges of the antechamber entrance and removing cloud particles which enter the antechamber.
 
 
WEP119 Coherent Radiation in Whispering Gallery Modes resonance, radiation, impedance, synchrotron 1710
 
  • R.L. Warnock
    SLAC, Menlo Park, California, USA
  • J.C. Bergstrom
    CLS, Saskatoon, Saskatchewan, Canada
 
  Funding: Work at SLAC: U.S. Department of Energy Contract No. DE-AC03-76SF00515 Work at CLS: NSERC, NRC, Province of Saskatchewan, U. of Saskatchewan.
Theory predicts that CSR in storage rings should appear in whispering gallery modes *, which are resonances of the entire vacuum chamber and are characterized by their high frequencies and concentration of the field near the outer wall of the chamber. The theory assumes that the chamber is a smooth circular torus. We observe that a power spectrum from the NSLS-VUV ring **, which has a vacuum chamber in bends like that of the model, shows a series of sharp peaks with frequencies close to those of the theory. Sharp peaks are also seen in highly resolved spectra at the Canadian Light Source***, and those are invariant in position under large changes in the machine setup (energy, fill pattern, bunch length, CSR bursting or steady, optical beam line, etc.). Invariance of the spectrum suggests that it is due to resonances like whispering gallery modes, but they must be strongly perturbed from the circular case because of large outer wall excursions at the two IR ports.
* R. L. Warnock and P. Morton, Part. Accel. 25, 113 (1990).
** G. L. Carr et al., Proc. PAC 2001, Chicago.
*** T. May et al., IEEE 33rd Intl. Conf. IR Millimeter and THz Waves, 2008.
 
 
WEP126 Progress in Experimental Study of Current Filamentation Instability plasma, simulation, electron, radiation 1719
 
  • B.A. Allen, P. Muggli
    USC, Los Angeles, California, USA
  • M. Babzien, M.G. Fedurin, K. Kusche, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • J.L. Martins, L.O. Silva
    IPFN, Lisbon, Portugal
  • W.B. Mori
    UCLA, Los Angeles, California, USA
 
  Funding: Work supported by Department of Energy and National Science Foundation
Current Filamentation Instability, CFI, is of central importance for the propagation of relativistic electron beams in plasmas. CFI could play an important role in the generation of magnetic fields and radiation in the after-glow of gamma ray bursts and also in energy transport for the fast-igniter inertial confinement fusion concept. Simulations were conducted with the particle-in-cell code QuickPIC* for e- beam and plasma parameters at the Brookhaven National Laboratory – Accelerator Test Facility, BNL-ATF. Results show that for a 2cm plasma the instability reaches near saturation. An experimental program was proposed and accepted at the BNL-ATF and an experiment is currently underway. There are three components to the experimental program: 1) imaging of the beam density/filaments at the exit from the plasma, 2) measurement and imaging of the transverse plasma density gradient and measurement of the magnetic field and 3) identifying the radiation spectrum of the instability. Preliminary results from phase one will be presented along with the progress and diagnostic design for the following phases of the experiment.
* C. Huang et. al. Journal of Computational Physics 217, 2(2006)
 
 
WEP138 Developing Software Packages for Electromagnetic Simulations simulation, electromagnetic-fields, radio-frequency, scattering 1740
 
  • J. Xu, M. Min, B. Mustapha
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
In addition to previous developments on parallel beam dynamics software packages, our efforts have been extended to electromagnetic simulations. These efforts include developing new software packages solving the Maxwell equations in 2D and 3D. Scalable algorithms have been used for use of ALCF supercomputers. These new solvers are based on high order numerical methods. Comparative studies of structured and unstructured grids, continuous and discontinuous Galerkin methods will be discussed. The effects of bases will also be presented. Efficiency and challenges of new software packages will be presented. Some benchmarking and simulation results will be shown.
 
 
WEP142 Electron Cloud Modeling Results for Time-resolved Shielded Pickup Measurements at CesrTA electron, pick-up, positron, simulation 1752
 
  • J.A. Crittenden, Y. Li, X. Liu, M.A. Palmer, J.P. Sikora
    CLASSE, Ithaca, New York, USA
  • S. Calatroni, G. Rumolo
    CERN, Geneva, Switzerland
 
  Funding: Support by DOE contract DE-FC02-08ER41538 and NSF contract PHY-0734867
The Cornell Electron Storage Ring Test Accelerator (CesrTA) program includes investigations into electron cloud buildup, applying various mitigation techniques in custom vacuum chambers. Among these are two 1.1 meter long sections located symmetrically in the east and west arc regions. These chambers are equipped with pickup detectors shielded against the direct beam-induced signal. Here we report on results from the ECLOUD modeling code which highlight the sensitivity of these measurements to model parameters such as the photoelectron energy distributions, and the secondary elastic yield value.
 
 
WEP156 GPU-Accelerated 3D Time-Domain Simulation of RF Fields and Particle Interactions simulation, cavity, coupling, electron 1779
 
  • S.J. Cooke, B. Levush, A.N. Vlasov
    NRL, Washington, DC, USA
  • T.M. Antonsen
    UMD, College Park, Maryland, USA
  • I.A. Chernyavskiy
    SAIC, McLean, USA
 
  Funding: This work is supported by the U.S. Office of Naval Research.
The numerical simulation of electromagnetic fields and particle interactions in accelerator components can consume considerable computational resources. By performing the same computation on fast, highly parallel GPU hardware instead of conventional CPUs it is possible to achieve a 20x reduction in simulation time for the traditional 3D FDTD algorithm. For structures that are small compared to the RF wavelength, however, or that require fine grids to resolve, the FDTD technique is constrained by the Courant condition to use very small time steps compared to the RF period. To avoid this constraint we have implemented an implicit, complex-envelope 3D ADI-FDTD algorithm for the GPU and demonstrate a further 5x reduction in simulation time, now two orders of magnitude faster than conventional FDTD codes. Recently, a GPU-based particle interaction model has been introduced, for which results will be reported. These algorithms form the basis of a new code, NEPTUNE, being developed to perform self-consistent 3D nonlinear simulations of vacuum electron devices.
 
 
WEP161 Modeling and Simulations of Electron Emission from Diamond-Amplified Cathodes electron, simulation, cathode, scattering 1791
 
  • D.A. Dimitrov, R. Busby, J.R. Cary, D.N. Smithe
    Tech-X, Boulder, Colorado, USA
  • I. Ben-Zvi, X. Chang, T. Rao, J. Smedley, E. Wang, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the U. S. Department of Energy under the DE-SC0004431 grant.
Emission of electrons from a diamond-amplified cathode was recently demonstrated*. This experiment was based on a promising new concept** for generation of high-current, high-brightness, and low thermal emittance electron beams. The measurements from transmission and emission experiments have shown the potential to realize the diamond-amplified cathode concept. However, the results indicate that the involved physical properties should be understood in greater detail to build diamond cathodes with optical properties. We have already made progress in understanding the secondary electron generation and charge transport in diamond with the models we implemented in the VORPAL computational framework. We have been implementing models for electron emission from diamond and will present results from 3D VORPAL simulations with the integrated capabilities on generating electrons and holes, initiated by energetic primary electrons, propagation of the charge clouds, and then the emission of electrons into diamond. We will discuss simulation results on the dependence of the electron emission on diamond surface properties.
* X. Chang et al., Electron Beam Emission from a Diamond-Amplified Cathodes, to appear in Phys. Rev. Lett. (2010).
** I. Ben-Zvi et al., Secondary emission enhanced photoinjector, Rep. C-A/AP/149, BNL (2004).
 
 
WEP165 Advanced Modeling of TE Microwave Diagnostics of Electron Clouds plasma, electron, simulation, diagnostics 1803
 
  • S.A. Veitzer, D.N. Smithe, P. Stoltz
    Tech-X, Boulder, Colorado, USA
 
  Funding: Part of this work is being performed under the auspices of the U.S. Department of Energy as part of the ComPASS SciDAC project, #DE-FC02-07ER41499.
Numerical simulations of electron cloud buildup and in particular rf microwave diagnostics provide important insights into the dynamics of particle accelerators and the potential for mitigation of destabilizing effects of electron clouds on particle beams. Typical Particle-In-Cell (PIC) simulations may accurately model cloud dynamics; however, due to the large range of temporal scales needed to model side band production due to ecloud modulation, typical PIC models may not be the best choice. We present here preliminary results for advance numerical modeling of rf electron cloud diagnostics, where we replace kinetic particles with an equivalent plasma dielectric model. This model provides significant speedup and increased numerical stability, while still providing accurate models of rf phase shifts induced by electron cloud plasmas over long time scales.
 
 
WEP176 Loss Factor of Tapered Structures for Short Bunches impedance, factory, simulation, electromagnetic-fields 1816
 
  • A. Blednykh, S. Krinsky
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by DOE contract DE-AC02-98CH10886
Using the electromagnetic simulation code ECHO, we have found* a simple phenomenological formula that accurately describes the loss factor for short bunches traversing an axisymmetric tapered collimator. In this paper, we consider tapered collimators with elliptical cross-section and use the GdfidL code to calculate the loss factor dependence on the geometric parameters for short bunches. The results for both axisymmetric and elliptical collimators are discussed.
* A. Blednykh and S. Krinsky, Phys. Rev. ST-AB 13, 064401 (2010).
 
 
WEP179 Calculating Point-Charge Wakefields from Finite Length Bunch Wake-Potentials cavity, wakefield, impedance 1825
 
  • B. Podobedov
    BNL, Upton, Long Island, New York, USA
  • G.V. Stupakov
    SLAC, Menlo Park, California, USA
 
  Starting from analytical properties of high frequency geometric impedance we show how one can accurately calculate short bunch wake-potentials (and even point-charge wakefields) from time domain calculations performed with a much longer bunch. In many practical instances this drastically reduces the need for computer resources, speeds up the calculations, and improves their accuracy. To illustrate this method we give examples for 2D accelerator structures of various complexities.  
 
WEP181 Coherent Radiation in Insertion Devices radiation, undulator, wiggler, FEL 1828
 
  • A.A. Mikhailichenko
    CLASSE, Ithaca, New York, USA
  • E.G. Bessonov
    LPI, Moscow, Russia
 
  Funding: NSF
We calculate the coherent radiation in an undulator/wiggler with a vacuum chamber of arbitrary cross section. The backward radiation is a coherent and it has wavelengths about twice the period of the undulator/wiggler. Mostly of coherent radiation is going with the wavelengths approximately the bunch length at small angles however.
 
 
WEP186 Wake Potentials in the ILC Interaction Region wakefield, cavity, interaction-region, HOM 1837
 
  • A. Novokhatski
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.
The vacuum chamber of the ILC Interaction Region (IR) is optimized for best detector performance. It has special shaping to minimize additional backgrounds due to the metal part of the chamber. Also, for the same reason this thin vacuum chamber does not have water cooling. Therefore, small amounts of power, which may be deposited in the chamber, can be enough to raise the chamber to a high temperature. One of the sources of “heating” power is the electromagnetic field of the beam. This field diffracts by non-regularities of the beam pipe and excites free-propagating fields, which are then absorbed by the pipe wall. In addition we have a heating power of the image currents due to finite conductivity of the metallic wall. We will discuss these effects as updating the previous results.
 
 
WEP190 Magnetic Field Expansion Out of a Plane: Application to Cyclotron Development cyclotron, simulation, focusing, factory 1846
 
  • T. Hart, D.J. Summers
    UMiss, University, Mississippi, USA
  • K. Paul
    Tech-X, Boulder, Colorado, USA
 
  In studies of the dynamics of charged particles in a cyclotron magnetic field, the specified field is generally Bz in the z = 0 midplane where Br and Btheta are zero. Br(r,theta, z) and Btheta (r,theta, z) are usually determined through a linear expansion which assumes that Bz is independent of z. An expansion to only first order may not be sufficient for orbit simulations at small r and large z. This paper reviews the expansion of a specified Bz(r,theta, z = 0) out of the z = 0 midplane to arbitrary order, and shows simple examples worked out to 4th order.  
 
WEP195 Time Resolved Measurement of Electron Clouds at CesrTA using Shielded Pickups electron, pick-up, solenoid, positron 1855
 
  • J.P. Sikora, M.G. Billing, J.A. Crittenden, Y. Li, M.A. Palmer
    CLASSE, Ithaca, New York, USA
  • S. De Santis
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the US National Science Foundation PHY-0734867, and the US Department of Energy DE-FC02-08ER41538.
The Cornell Electron Storage Ring has been reconfigured as a Test Accelerator (CesrTA). Shielded pickups have been installed at three locations in CesrTA for the purpose of studying time resolved electron cloud build-up and decay. The pickup design provides electromagnetic shielding from the beam wakefield while allowing cloud electrons in the vacuum space to enter the detector. This paper describes the hardware configuration and capabilities of these detectors at CesrTA, presents examples of measurements, and outlines the interpretation of detector signals with regard to electron clouds. Useful features include time-of-flight measurement of cloud electrons and the use of a solenoidal field for energy measurement of photoelectrons. Measurement techniques include the use of two bunches spaced in multiples of 4ns, where the second bunch samples the decay of the cloud produced by the first bunch.
 
 
WEP207 Progress Towards A Novel Compact High Voltage Electrostatic Accelerator high-voltage, proton, tandem-accelerator, injection 1876
 
  • P. Beasley, O. Heid
    Siemens AG, Healthcare Technology and Concepts, Erlangen, Germany
 
  A proof-of-principle demonstrator system has been successfully built and tested. It is based on a Cockcroft-Walton (or Greinacher) cascade but has been developed using a different design philosophy and using modern materials. This can then enable this compact accelerator configuration to operate at much higher voltage gradients. This paper explores the progress made to-date and future plans to utilize the technology to develop one such concept for an energy efficient 10 MV, 100 microamp, tandem proton accelerator, with less than a 2 square meter footprint .  
 
WEP209 Reliability Study of the AIRIX Induction Accelerator over a Functioning Period of Ten Years (2000-2010) electron, high-voltage, diagnostics, controls 1882
 
  • H. Dzitko, A. Georges, B. Gouin, M. Mouillet
    CEA, Pontfaverger-Moronvilliers, France
 
  AIRIX is a high current (19 MeV, 2 kA) electron linear induction accelerator used as a 60 ns single shot X-ray source for hydrodynamic experiments. As single shot experiments are performed with the AIRIX facility, the best performances and a high reliability level must be met for each experiment. A high availability is also a key issue for the successful development of hydrotest projects. The AIRIX accelerator has been running for hydroshot experiments since 2000 and several thousands electron and X-ray beams have been produced. This paper outlines the reliability results of the AIRIX accelerator over a functioning period of ten years. Failure rates for each main subsystems are shown : injector, accelerating cells, high voltage generators, and measurement chains. We also give an overview of the most probable faults, with the associated occurrence rates, which can alter the X source of the AIRIX machine over this ten year period.  
 
WEP237 The Oak Ridge Isochronous Cyclotron Refurbishment Project extraction, ion, cyclotron, ISOL 1930
 
  • A.J. Mendez, J.B. Ball, D. Dowling, S.W. Mosko, B.A. Tatum
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: Managed by UT-Battelle, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725.
The Oak Ridge Isochronous Cyclotron (ORIC) has been in operation for nearly fifty years at the Oak Ridge National Laboratory (ORNL). Presently, it serves as the driver accelerator for the ORNL Holifield Radioactive Ion Beam Facility (HRIBF), where beams are produced using the Isotope Separation Online (ISOL) technique for post-acceleration by the HRIBF 25URC tandem accelerator. Operability and reliability of ORIC are critical issues for the success of HRIBF and have presented increasingly difficult operational challenges for the facility in recent years. Earlier this year, a trim coil failure rendered ORIC inoperable for several months. This presented HRIBF with the opportunity to undertake various repairs and maintenance upgrades aimed at restoring the full functionality of ORIC and improving the reliability to a level better than what had been typical over the previous decade. In this paper, we present details of these efforts, including the replacement of the entire trim coil set and measurements of their radial field profile. Comparison of measurements and operating tune parameters with setup code predictions will also be presented.
 
 
WEP244 Growth and Characterization of Bialkali Photocathodes for Cornell ERL Injector cathode, gun, laser, ion 1942
 
  • L. Cultrera, I.V. Bazarov, J.V. Conway, B.M. Dunham, Y. Li, X. Liu, K.W. Smolenski
    CLASSE, Ithaca, New York, USA
  • S.S. Karkare, J.M. Maxson
    Cornell University, Ithaca, New York, USA
 
  The requirements of high quantum efficiency in the visible spectral range and that of an increased lifetime as compared to cesiated GaAs can be met by multi-alkali photocathodes, either CsKSb or NaKSb. In this paper we detail the procedures that allow the growth of thin films suitable for the ERL photoinjector operating at Cornell University. Quantum efficiency, spectral response, and surface characterization of deposited samples is presented. A load-locked multi-alkali cathode growth system is also described.  
 
WEP276 Development of an Advanced Barium Ion Source for a Laser-Induced-Fluorescence (LIF) Diagnostic on the Paul Trap Simulator Experiment (PTSX) ion, ion-source, diagnostics, plasma 1996
 
  • H. Wang, R.C. Davidson, P. Efthimion, E.P. Gilson, R. M. Majeski
    PPPL, Princeton, New Jersey, USA
 
  The Paul Trap Simulator Experiment (PTSX) is a cylindrical Paul trap that simulates the nonlinear transverse dynamics of intense charged particle beam propagation through an equivalent kilometers-long magnetic alternating-gradient (AG) focusing system. Understanding the collective dynamics and instability excitations of intense charged particle beam is of great importance for a wide variety of accelerator applications. Since the optical spectrum of barium ions is better-suited to the Laser-Induced-Fluorescence (LIF) diagnostic than cesium ions, a barium ion source is being developed to replace the cesium ion source. A Laser-Induced-Fluorescence diagnostic will be able to provide in situ measurement of the radial density profile and, ultimately, the velocity distribution function of the intense charged particle beam. The new barium ion source is expected to increase the ion density as well as minimize the number of neutral barium atoms which enter the PTSX vacuum chamber. The design includes an ionizer, an extractor, and a neutral gas filter scheme. Initial test results of this new barium ion source will be presented.  
 
WEP284 Performance Study of K2CsSb Photocathode inside a DC High Voltage Gun gun, high-voltage, laser, cathode 2017
 
  • T. Rao, J. Smedley
    BNL, Upton, Long Island, New York, USA
  • J.M. Grames, R.R. Mammei, J.L. McCarter, M. Poelker, R. Suleiman
    JLAB, Newport News, Virginia, USA
 
  Funding: The authors wish to acknowledge the support of the U.S. Department of Energy (DOE) under grant DE-FG02-08ER41547.
In the past decade, there has been considerable interest in the generation of tens of mA average current in a photoinjector. Until recently, GaAs:Cs cathodes and K2CsSb cathodes have been tested successfully in DC and RF injectors respectively for this application. Our goal is to test the GaAs:Cs in RF injector and the K2CsSb cathode in the DC gun in order to widen our choices. Since the multialkali cathode is a compound with uniform stochiometry over its entire thickness, we anticipate that the life time issues seen in GaAs:Cs due surface damage by ion bombardment would be minimized with this material. Hence successful operation of the K2CsSb cathode in DC gun could lead to a relatively robust electron source capable of delivering ampere level currents. In order to test the performance of K2CsSb cathode in a DC gun, we have designed and built a load lock system that would allow the fabrication of the cathode at BNL and its testing at JLab. In this paper, we will present the design of the load-lock system, cathode fabrication, and the cathode performance in the preparation chamber and in the DC gun.
 
 
WEP287 Field Emission Measurements from Niobium Electrodes niobium, cathode, high-voltage, SRF 2020
 
  • M. BastaniNejad
    Old Dominion University, Norfolk, Virginia, USA
  • P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R.R. Mammei, M. Poelker
    JLAB, Newport News, Virginia, USA
 
  Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.  
 
WEP293 Design and Fabrication of the Lithium Beam Ion Injector for NDCX-II ion, ion-source, optics, solenoid 2032
 
  • J.H. Takakuwa, J.-Y. Jung, J.T. Kehl, J.W. Kwan, M. Leitner, P.A. Seidl, W.L. Waldron
    LBNL, Berkeley, California, USA
  • A. Friedman, D.P. Grote, W. M. Sharp
    LLNL, Livermore, California, USA
 
  Funding: This work is performed under the auspices of the U.S. Department of Energy by LBNL under contract DE-AC02-05CH11231.
A 130 keV injector is developed for the NDCX-II facility. It consists of a 10.9 cm diameter lithium doped alumina-silicate ion source heated to ~1300 °C and 3 electrodes. Other components include a segmented Rogowski coil for current and beam position monitoring, a gate valve, pumping ports, a focusing solenoid, a steering coil and space for inspection and maintenance access. Significant design challenges including managing the 3-4 kW of power dissipation from the source heater, temperature uniformity across the emitter surface, quick access for frequent ion source replacement, mechanical alignment with tight tolerance, and structural stabilization of the cantilevered 27” OD graded HV ceramic column. The injector fabrication is scheduled to complete by May 2011, and assembly and installation is scheduled to complete by the beginning of July.
 
 
THOBN6 Wakefield Breakdown Test of a Diamond-Loaded Accelerating Structure wakefield, simulation, laser, acceleration 2074
 
  • S.P. Antipov, C.-J. Jing, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.E. Conde, D.S. Doran, W. Gai, J.G. Power, Z.M. Yusof
    ANL, Argonne, USA
 
  Funding: DOE SBIR
Diamond has been proposed as a dielectric material for dielectric loaded accelerating (DLA) structures. It has a very low microwave loss tangent, the highest available thermoconductive coefficient and high RF breakdown field. In this paper we report the results from a wakefield breakdown test of diamond-loaded rectangular accelerating structure and development of a cylindrical diamond DLA. We expect to achieve field levels on the order of 100 MV/m in the structure using the 100nC beam at the Argonne Wakefield Accelerator Facility. Single crystal diamond plates produced by chemical vapor deposition (CVD) are used in the structure. The structure is designed to yield up to 0.5 GV/m fields on the diamond surface to test it for breakdown. A surface analysis of the diamond is performed before and after the beam test.
 
slides icon Slides THOBN6 [1.629 MB]  
 
THOBS4 Current Status of Insertion Device Development at the NSLS-II and its Future Plans undulator, insertion, insertion-device, wiggler 2090
 
  • T. Tanabe, O.V. Chubar, T.M. Corwin, D.A. Harder, P. He, C.A. Kitegi, G. Rakowsky, J. Rank, C. Rhein, C.J. Spataro
    BNL, Upton, Long Island, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the U.S. Department of Energy.
National Synchrotron Light Source-II (NSLS-II) project is currently under construction. Procurement of various insertion devices (IDs) has begun. IDs in the project baseline scope include six 3.5m long damping wigglers (DWs) with 100mm period, two 2.0m Elliptically Polarizing Undulator (EPU) with 49mm period, two 3.0m-20mm period IVUs and one 1.5m-21mm IVU. Recently a special device for inelastic X-ray scattering beamline has been added to the collection of baseline devices. This is a special wide pole IVU with 22mm period for a long straight section. Three pole wigglers with 28mm gap and peak field over 1T will be utilized for NSLS bending magnet users. Examples of R&D work for future devices are: 1) Development of in-vacuum magnetic measurement system (IVMMS), 2) Use of new type of magnet such as PrFeB for improved performance on cryo-permanent magnet undulator (CPMU), 3) Development of closed loop He gas refrigerator with a linear motor actuator, 4) Adaptive gap undulator (AGU) 5) Various field measurement technique improvement. Design features of the baseline devices, ID-Magnetic Measurement Facility and the future plans for NSLS-II ID activities are described.
 
slides icon Slides THOBS4 [4.171 MB]  
 
THOBS5 Extruded Aluminum Vacuum Chambers for Insertion Devices undulator, insertion, insertion-device, synchrotron 2093
 
  • E. Trakhtenberg, P.K. Den Hartog, G.E. Wiemerslage
    ANL, Argonne, USA
 
  Funding: Work is supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Science under Contract No. DE-AC02-06CH 11357.
Extruded aluminum vacuum chambers are commonly used in the storage rings of synchrotron facilities. For 18 years the APS has designed and fabricated vacuum chambers made from extruded aluminum for use with insertion devices at the APS and for use at other facilities including BESSY II, the Swiss Light Source (SLS), the Canadian Light Source (CLS), the TESLA Test Facility (TTF), and the European Synchrotron Radiation Facility (ESRF). Most recently extruded aluminum chambers were developed for LCLS with a 0.5-mm wall thickness along the entire 3.8-meter length. Surface roughness for the LCLS vacuum chamber interior was reduced, on average, to less than 300 nm through an abrasive flow polishing technique. Currently under development is an extruded aluminum chamber for the superconducting undulator at the APS. So far, 120 vacuum chambers have been produced with these methods. Results of the development, construction, and manufacturing of extruded aluminum vacuum chambers with small vertical apertures and thin walls are presented. The design, technological challenges, and positive and negative experiences are discussed.
 
slides icon Slides THOBS5 [7.855 MB]  
 
THOBS6 Thin Film Coatings for Suppressing Electron Multipacting in Particle Accelerators electron, target, dipole, plasma 2096
 
  • P. Costa Pinto, S. Calatroni, P. Chiggiato, H. Neupert, E.N. Shaposhnikova, M. Taborelli, W. Vollenberg, C. Yin Vallgren
    CERN, Geneva, Switzerland
 
  Thin film coatings are an effective way for suppressing electron multipacting in particle accelerators. For bakeable beam pipes, the TiZrV Non Evaporable Getter (NEG) developed at CERN can provide a Secondary Electron Yield (SEY) of 1.1 after activation at 180oC (24h). The coating process was implemented in large scale to coat the long straight sections and the experimental beam pipes for the Large Hadron Collider (LHC). For non bakeable beam pipes, as those of the Super Proton Synchrotron (SPS), CERN started a campaign to develop a coating having a low SEY without need of in situ heating. Magnetron sputtered carbon thin films have shown SEY of 1 with marginal deterioration when exposed in air for months. This material is now being tested in both laboratory and accelerator environment. At CERN’s SPS, tests with electron cloud monitors attached to carbon coated chambers show no degradation of the coating after two years of operation interleaved with a total of 3 months of air exposure during shutdown periods. This paper presents the SEY characteristics of both TiZrV and carbon films, the coating processes and the proposed route towards large scale production for the carbon coatings.  
slides icon Slides THOBS6 [4.620 MB]  
 
THOCN1 Cathodes for Photoemission Guns electron, laser, gun, emittance 2099
 
  • L. Cultrera
    CLASSE, Ithaca, New York, USA
 
  The last decade has seen a considerable interest in pursuit and realization of novel light sources such as Free Electron Lasers and Energy Recovery Linacs that promise to deliver unprecedented quality x-ray beams. The performance of these machines is strongly related to the brightness of the electron beam generating the x-rays. The brightness of the electron beam itself is mainly limited by the physical processes by which electrons are generated. For laser based photoemission sources this limit is ultimately related to the properties of photocathodes. In this paper an overview of the recent progress on photocathode development for photoemission electron sources is presented.  
 
THP029 Temperature and Optimize Design of Beam Window in the Accelerator proton, target, neutron, radiation 2175
 
  • J.J. Tian, H. Hao, G. Liu, H.L. Luo, X.Q. Wang, H.L. Wu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Careful evaluation of the heat-transfer and corresponding problems is important in the beam window in the design and operation of Accelerator Driven sub-critical System (ADS). Using the Monte-Carlo code Fluka, we studied the energy deposition of the beam window in high power proton accelerator. The temperature distribution of the beam window is calculated in presence of the coolant. The process of computation for various materials will be introduced, and an optimized design scheme is given. The results suggest that some measures could be used to reduce the damage to the beam window, such as dividing current into branch currents, expanding the bunch or using beryllium as the material of the beam window, et al.  
 
THP064 The Dipole Corrector Magnets for the RHIC Fast Global Orbit Feedback System dipole, feedback, quadrupole, interaction-region 2249
 
  • P. Thieberger, L. Arnold, C. Folz, R.L. Hulsart, A.K. Jain, R. Karl, G.J. Mahler, W. Meng, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, V. Ptitsyn, J. Ritter, L. Smart, J.E. Tuozzolo, J. White
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The recently completed RHIC fast global orbit feedback system uses 24 small “window-frame” horizontal dipole correctors. Space limitations dictated a very compact design. The magnetic design and modelling of these laminated yoke magnets is described as well as the mechanical implementation, coil winding, vacuum impregnation, etc. Test procedures to determine the field quality and frequency response are described. The results of these measurements are presented and discussed. A small fringe field from each magnet, overlapping the opposite RHIC ring, is compensated by a correction winding placed on the opposite ring’s magnet and connected in series with the main winding of the first one. Results from measurements of this compensation scheme are shown and discussed.
 
 
THP134 Lifetime Measurement with Pseudo Moveable Septum in NSLS X-ray Ring injection, septum, closed-orbit, kicker 2375
 
  • G.M. Wang, J. Choi, R. Heese, S.L. Kramer, T.V. Shaftan, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No.DE-AC02-98CH10886
The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source currently under construction at Brookhaven National Laboratory and starts to commission in 2014. The beam injection works with two septa and four fast kicker magnets in an injection section. To improve the injection stability and reproducibility, we plan to implement a slow local bump on top of the fast bump so that the fast kicker strength is reduced. This bump works as a pseudo movable septum. We can also use this ‘movable’ septum to measure the storage ring beam partial lifetime resulting from the septum edge and possibly increasing the lifetime by moving the stored beam orbit away from the edge. We demonstrate the feasibility of this idea, by implementing DC bump in NSLS X-ray ring. We report the results of beam lifetime measurements as a function of the amplitude of this bumped orbit relative to the septum and the idea of a slow bump that could reduce the fast bump magnet strengths.
 
 
THP135 Implementation of a DC Bump at the Storage Ring Injection Straight Section septum, injection, kicker, storage-ring 2378
 
  • G.M. Wang, R.P. Fliller, W. Guo, R. Heese, S.L. Kramer, B. Parker, T.V. Shaftan, C.J. Spataro, F.J. Willeke, L.-H. Yu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No.DE-AC02-98CH10886
The NSLS II beam injection works with two septa and four fast kicker magnets. The kicker power supplies each produce a two revolution periods pulsed field, 5.2μs half sine waveform, using ~5kV drive voltage. The corresponding close orbit bump amplitude is ~15mm. It is desired that the bump they produce is transparent to the users for top-off injection. However, high voltage and short pulse power supplies have challenges to maintain pulse-to-pulse stability and magnet-to-magnet reproducibility. To minimize these issues, we propose to implement a DC local bump on top of the fast bump to reduce the fast kicker strength by a factor of 2/3. This bump uses two ring corrector magnets plus one additional magnet at the septum to create a bump. Additionally, these magnets could provide a DC bump, which would simulate the effects of a movable septum on the store beam lifetime. This paper presents the detail design of this DC injection bump and related beam dynamics.
 
 
THP175 The Effects of Mirror Surface Error on Coherent X-Ray Propagation in XFELO Cavity cavity, FEL, simulation, undulator 2441
 
  • G.-T. Park
    University of Chicago, Chicago, Illinois, USA
  • K.-J. Kim, R.R. Lindberg
    ANL, Argonne, USA
 
  We study the propagation of coherent X-ray mode through optical cavity of X-ray FEL oscillator (XFELO) including rough grazing incidence mirror.
References
* K-J Kim, Y Shvyd'ko and S Reiche, Phys. Rev. Lett 100, 24802(2008)
** S. K. Sinha, E. B Sirota, S. Garoff, Phys. Rev. B38 2297 ((1988)
*** G. Park in preparation
 
 
THP202 First Operation of the LANL/AES Normal Conducting Radio Frequency Photoinjector cavity, photon, pick-up, cathode 2498
 
  • N.A. Moody, H.L. Andrews, G.O. Bolme, L.J. Castellano, C.E. Heath, F.L. Krawczyk, S. Kwon, D. C. Lizon, P.S. Marroquin, F.A. Martinez, D.C. Nguyen, M.S. Prokop, R.M. Renneke, W. Roybal, P.A. Torrez, W.M. Tuzel, T. Zaugg
    LANL, Los Alamos, New Mexico, USA
  • L. Roybal
    TechSource, Santa Fe, New Mexico, USA
 
  Funding: We gratefully acknowledge funding from the Office of Naval Research (ONR) and the High Energy Laser Joint Technology Office (HEL-JTO).
The LANL/AES normal-conducting radio-frequency (NCRF) injector has undergone high power testing, confirming field gradients of up to 10 MV/m at the cathode. Most NCRF designs are limited to low-duty-factor operation to constrain rf power consumption and limit ohmic heat generation. This cavity structure utilizes high density micro-channel cooling to successfully remove heat with the option of dynamic temperature control to actively adjust cavity resonance. This first high power rf test demonstrated stable cw (100% duty cycle) operation using resonant frequency tracking and produced intentional dark current emission from a roughened cathode blank. Resulting end-point x-ray measurements confirm the cathode gradient of 9.8 ± 0.2 MV/m required for acceleration of nC bunches to a beam energy of 2.5 MeV.
 
 
THP203 Improved Inverted DC Gun Insulator Assembly gun, high-voltage, power-supply 2501
 
  • M.L. Neubauer, A. Dudas, R. Sah
    Muons, Inc, Batavia, USA
 
  Funding: Work supported in part by USDOE Contract No. DE-AC05-84-ER-40150.
High gradient DC guns are currently being developed with inverted ceramic insulators in order to avoid failure of the insulators from field emission and charge build-up. Our goal is to increase the DC voltages from 250 kV to 500 kV in these inverted ceramic DC Gun insulator assemblies. To achieve reliability, the arc-path gradient along the length of the insulator ceramic at the interface with the dielectric material should be lower than 500 kV/m (13 V/mil). In order to achieve this low arc-path gradient, a novel extended inverted insulator ceramic is being developed. Novel assembly processes are being developed for the high voltage connector, so that the interface between the connector dielectric and the surface of the extended inverted ceramic insulator will be void free. A complete DC Gun Inverted Ceramic Insulator Assembly will be designed and fabricated for reliable 500 kV DC operation.
 
 
THP204 Corrections to Quantum Efficiency Predictions for Low Work Function Electron Sources electron, scattering, simulation, target 2504
 
  • K. L. Jensen
    NRL, Washington, DC, USA
  • D.W. Feldman, E.J. Montgomery, P.G. O'Shea
    UMD, College Park, Maryland, USA
  • J.J. Petillo
    SAIC, Billerica, Massachusetts, USA
 
  Funding: Funding by the Joint Technology Office and the Office of Naval Research.
The Three-Step Model of Spicer, or the analogous Moments-based models, can be used to predict photoemission from metals and cesiated metals. In either, it is a convenient approximation to neglect electrons that have undergone scattering. Using Monte Carlo to follow scattered electrons, we assess the utility of the approximation particularly for low work function (cesiated) surfaces.
 
 
THP208 Development of Alkali-Based High Quantum Efficiency Semiconductors for Dispenser Photocathodes cathode, electron, laser, FEL 2510
 
  • E.J. Montgomery, D.W. Feldman, S.A. Khan, P.G. O'Shea, P.Z. Pan, B.C. Riddick
    UMD, College Park, Maryland, USA
  • K. L. Jensen
    NRL, Washington, DC, USA
 
  Funding: This work is supported by the Office of Naval Research.
Photocathodes as electron beam sources can meet the stringent requirements of high performance FELs, but exhibit a lifetime-efficiency tradeoff. High quantum efficiency (QE) cathodes are typically semiconductors, well described by recently enhanced theory*. Cesium dispenser technology, proven to extend lifetime of tungsten cathodes**, can be extended to high QE via the development of semiconductor coatings which are suitable for rejuvenation. Rejuvenation occurs via controlled cesium diffusion through a sintered substrate to resupply the surface (as described by models of pore*** and surface**** diffusion). Compatible coatings must be thermally stable materials with a cesium-based surface layer. Following standard fabrication processes*****, we discuss alkali antimonides and alkali aurides as cesium dispenser photocathode coatings and analyze future prospects. We also describe improvements to experimental techniques.
*K.L. Jensen et al., (this conference)
**Moody et al., J. Appl. Phys. 102(10), 2010
***B.C. Riddick et al., (this conference)
****P.Z. Pan et al., (this conference)
*****S.A. Khan et al., (this conference)
 
 
THP216 Progress with NSLS-II Injection Straight Section Design injection, septum, kicker, storage-ring 2528
 
  • T.V. Shaftan, A. Blednykh, W.R. Casey, L.R. Dalesio, R. Faussete, M.J. Ferreira, R.P. Fliller, G. Ganetis, R. Heese, H.-C. Hseuh, P.K. Job, E.D. Johnson, B.N. Kosciuk, S. Kowalski, S.L. Kramer, D. Padrazo, B. Parker, I. Pinayev, S.K. Sharma, O. Singh, C.J. Spataro, G.M. Wang, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by U.S. DOE, Contract No.DE-AC02-98CH10886
NSLS-II injection straight section consists of the pulsed and DC/Slow bumps, septa system, beam trajectory correction and diagnostics systems. In this paper we discuss overall injection straight layout, preliminary element designs, specifications for the pulsed and DC magnets and their power supplies, vacuum devices and chambers and diagnostics devices.
 
 
THP218 Design Concept for a Modular In-vacuum Hall Probe Mapper for use with CPMU Convertible In-vacuum Undulators of Varying Magnetic Length undulator, cryogenics, insertion, insertion-device 2534
 
  • J. Rank, D.A. Harder, G. Rakowsky, T. Tanabe
    BNL, Upton, Long Island, New York, USA
 
  Funding: NSLS-II, Brookhaven National Laboratory, working under the U.S. DOE, Contract No.DE-AC02-98CH10886.
Both In-Vacuum Undulators (IVU) and Cryogenic Permanent Magnet Undulators (CPMU), each important to third generation light sources, are best characterized in their operating environment. To create a precise Hall probe map of an IVU/CPMU (IVU hereafter), an In-Vacuum Magnetic Measurement (IVMM) System is proposed. Point-by-point measurement of field and trajectory error at operating conditions informs corrective tuning. A novel design concept for a universal IVMM System has been developed and explored. The IVMM seals to the rectangular UHV-flange of the IVU and shares its common vacuum space. Moreover, a modular design permits a range of IVU of varying magnetic length to be mapped with a single IVMM System, and is thus cost effective when multiple IVU of different configuration are planned. Here we review aspects of the modular IVMM design concept.
 
 
FROBS1 World-wide Experience with SRF Facilities SRF, cryomodule, survey, cavity 2575
 
  • A. Hutton, A. Carpenter
    JLAB, Newport News, Virginia, USA
 
  The speaker will review and analyze the performance of existing SRF facilities in the world, addressing issues of usage and availability for different customers (HEP research, material sciences, ADS). Lessons learned should be summarized for proposed future facilities (ILC, ProjectX, Muon Collider).  
slides icon Slides FROBS1 [5.473 MB]  
 
FROBS5 1.3 GHz Superconducting RF Cavity Program at Fermilab cavity, SRF, cryomodule, diagnostics 2586
 
  • C.M. Ginsburg, T.T. Arkan, S. Barbanotti, H. Carter, M.S. Champion, L.D. Cooley, C.A. Cooper, M.H. Foley, M. Ge, C.J. Grimm, E.R. Harms, A. Hocker, R.D. Kephart, T.N. Khabiboulline, J.R. Leibfritz, A. Lunin, J.P. Ozelis, Y.M. Pischalnikov, A.M. Rowe, W. Schappert, D.A. Sergatskov, A.I. Sukhanov, G. Wu
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under contract DE-AC02-07CH11359 with the U.S. Department of Energy.
At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules, for Project X, an International Linear Collider, or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.
 
slides icon Slides FROBS5 [3.749 MB]