
ACCURATE COMPUTATION OF TRANSFER MAPS FOR REALISTIC
BEAMLINE ELEMENTS FROM SURFACE DATA∗

C. Mitchell, NRL, Washington, DC 20375, USA
A. Dragt, University of Maryland, College Park, MD 20742, USA

Abstract

The behavior of orbits in charged-particle beam trans-

port systems, including both linear and circular accelera-

tors as well as final focus sections and spectrometers, can

depend sensitively on nonlinear fringe-field and high-order

multipole effects in the various beam-line elements. The

inclusion of these effects requires a detailed and realistic

model of the interior and fringe fields, including their high

spatial derivatives. A collection of surface fitting methods

has been developed for extracting this information accu-

rately from 3-dimensional field data on a grid, as provided

by various 3-dimensional finite-element field codes. Based

on these realistic field models, Lie or other methods may

be used to compute accurate design orbits and accurate

transfer maps about these orbits. This talk will provide a

description of the methods used along with example ap-

plications. An exactly-soluble but numerically challenging

model field is used to provide a rigorous collection of per-

formance benchmarks.

BACKGROUND

For the design of high-performance storage or damping

rings it is essential to have realistic electric and magnetic

field information for the various beam-line elements, in or-

der to compute accurate design orbits and high-order trans-

fer maps about the design orbits. Realistic field data can

be provided on a grid with the aid of various 3-dimensional

finite element codes, sometimes spot checked against mea-

sured data. But the computation of high-order transfer

maps based on this data poses a difficult problem: the cal-

culation of high-order transfer maps requires a knowledge

of high derivatives of the field data. The direct calculation

of high derivatives based only on grid data is intolerably

sensitive to noise (due to truncation or round-off) in the grid

data. We will see that this problem can be overcome by the

use of surface methods. The effect of numerical noise can

be overcome by fitting onto a bounding surface far from

the beam axis and continuing inward using the Maxwell

equations. While the process of differentiation serves to

amplify the effect of numerical noise, the process of con-

tinuing inward using the Maxwell equations is smoothing.

This smoothing is related to the fact that harmonic func-

tions take their extrema on boundaries. When using surface

methods, all fits are made to such boundaries. Therefore if

these fits are accurate, interior data based on these fits will

be even more accurate.

∗Work supported by U.S. Department of Energy Grant DE-FG02-

96ER40949.

In this paper we will devote our attention to mag-

netic beam-line elements. (For a treatment of RF cav-

ities, see [1].) Two cases have been treated separately:

straight and curved. For straight beam-line elements such

as quadrupoles, sextupoles, octupoles, and wiggglers, it is

convenient to employ cylindrical surfaces. These surfaces

may have circular, elliptical, or rectangular cross sections.

We will describe the use of elliptical cylinders. The use of

circular and rectangular cylinders is described elsewhere

[2, 4, 5]. For the case of curved magnetic elements such

as dipoles with large design-orbit sagitta, we will employ

the surface of a bent box with straight ends. In all cases

the bounding surface will surround the design orbit within

the beam-line element and will extend into the fringe-field

regions outside the beam-line element, thus taking into ac-

count all fringe-field effects as well as all effects within the

body of the beam-line element.

For the case of straight beam-line elements it is conve-

nient to describe the magnetic field in terms of a magnetic

scalar potential ψ. Then, if one wishes to compute transfer

maps in terms of canonical coordinates, one can proceed

with the aid of an associated vector potential A computed

from ψ. Alternatively, if one wishes to integrate noncanon-

ical equations employing the magnetic field B, it can be

obtained from the relation B = ∇ψ.

For the case of curved beam-line elements it is conve-

nient to work directly with the vector potential. Its use in

the case of canonical coordinates is then immediate. If in-

stead one wishes to integrate noncanonical equations em-

ploying the magnetic field B, it can be obtained from the

relation B = ∇× A.

In this paper we will first treat the case of straight beam-

line elements. For this case a cylindrical multipole expan-

sion for ψ is convenient. In Sections II-III we will describe

such an expansion and how it can be computed based on B
data provided on a grid and interpolated onto the surface of

an elliptical cylinder. In Section IV we will treat the case

of curved beam-line elements. In this case A will be com-

puted based on both B and ψ data provided on a grid and

interpolated onto the surface of a bent box.

CYLINDRICAL HARMONIC
EXPANSIONS

In a current-free region the magnetic field B is curl free,

and can therefore can be described in terms of a magnetic

scalar potential. Because B is also divergence free, ψ must

obey the Laplace equation ∇2ψ = 0. A general solution ψ
satisfying the Laplace equation in cylindrical coordinates
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and analytic near the axis ρ = 0 takes the form

ψ(ρ, φ, z) =
∞∑

m=0

∫ ∞

−∞
dk Im(kρ)eikz [Gm,s(k) sinmφ

+Gm,c(k) cos mφ] . (1)

By utilizing the Taylor series of the modified Bessel func-

tion Im we may write ψ in the form of a cylindrical har-

monic (multipole) expansion:

ψ(ρ, φ, z) =
∞∑

m=0

[ψm,s(ρ, z) sinmφ + ψm,c(ρ, z) cos mφ] ,

(2)

where for α = s, c,

ψm,α(ρ, z) =
∞∑

l=0

(−1)lm!
22ll!(l + m)!

C [2l]
m,α(z)ρ2l+m. (3)

The functions C
[n]
m,α, known as generalized gradients, are

defined by

C [n]
m,α(z) =

in

2mm!

∫ ∞

−∞
dk eikzkm+nGm,s(k). (4)

Once they are known, power series for ψ and the three com-

ponents of the vector potential A are specified, as described

in [3, 5]. Note that C
[n]
m,α(z) = dnC

[0]
m,α(z)/dzn.

FITTING USING AN ELLIPTICAL
CYLINDER

We will now describe how the generalized gradients can

be computed based on B data provided on a grid and in-

terpolated onto the surface of an elliptical cylinder. Elliptic

coordinates in the x, y plane are described by the relations

x = f cosh(u) cos(v), y = f sinh(u) sin(v). (5)

Contours of constant u, with u ∈ [0,∞], are nested ellipses

with common foci located at (x; y) = (±f ; 0). Contours

of constant v, with v ∈ [0, 2π], are hyperbolae. Together

these contours form an orthogonal coordinate system.

Suppose we are provided with the three components of

the magnetic field on a regular 3-d Cartesian grid. Con-

sider an elliptical cylinder surrounding the axis of the mag-

netic element, which lies within all iron and other magnetic

sources. Such a surface is obtained by setting u = U and

allowing the coordinates v, z to vary. This data can then be

interpolated onto the surface of the elliptical cylinder to ob-

tain the normal component Bu of the field on this surface.

Define the functions F� and G� in terms of the surface

data as

F�(U, k) =
∫ π

−π

√
J(U, v)B̃u(U, v, k)se�(v, q)dv, (6a)

G�(U, k) =
∫ π

−π

√
J(U, v)B̃u(U, v, k)ce�(v, q)dv. (6b)

Here B̃u(U, v, k) is the Fourier transform of Bu(U, v, z),
se� and ce� are Mathieu functions [6, 7], J(u, v) is the Ja-

cobian of the mapping from Cartesian to elliptic coordi-

nates, and q = −k2f2/4. The on-axis gradients are now

given by

C [n]
m,α(z) =

in

2mm!
1√
2π

∫ ∞

−∞
km+neikzβα

m(U, k)dk (7)

where

βs
m(U, k) =

∞∑

�=0

g�
s(k)E(�)

m (k)
[

F�(U, k)
Se′�(U, q)

]
, (8a)

βc
m(U, k) =

∞∑

�=0

g�
c(k)D(�)

m (k)
[

G�(U, k)
Ce′�(U, q)

]
. (8b)

Here Se� and Ce� are modified Mathieu functions, and

g�
α, D

(�)
m , E

(�)
m are known functions that relate Mathieu and

Bessel functions [4, 5].

Benchmarks
Here we describe an exactly-soluble but numerically

challenging model field to be used to numerically bench-

mark the procedure just described. Suppose two magnetic

monopoles having strengths ±g are placed at the (x, y, z)
locations

r+ = (0, a, 0), r− = (0,−a, 0). (9)

These monopoles generate a scalar potential ψ(x, y, z)
given by the relation

ψ(x, y, z) = ψ+(x, y, z) + ψ−(x, y, z) =

− g[x2 + (y − a)2 + z2]−1/2 + g[x2 + (y + a)2 + z2]−1/2.
(10)

Due to the symmetries of the field, it can be shown that the

only nonvanishing associated generalized gradients C
[n]
m,α

are those with α = s and m odd. They have the values

C [0]
m,s(z) = (−1)(m−1)/2 g

am+1

(2m)!
22m−2(m!)2

β2m+1(z)

(11a)

where

β(z) =
a√

z2 + a2
. (11b)

This result has been used to benchmark the technique de-

scribed in the previous section in the case that a = 2.5 cm

and g = 1 Tesla-(cm)2. We set up a regular grid in x, y, z
space, where we let each variable range over the intervals

x ∈ [−4.4, 4.4] with spacing hx = 0.1, y ∈ [−2.4, 2.4]
with hy = 0.1, and z ∈ [−300, 300] with hz = 0.125 (in

units of cm). The values of the magnetic field at each grid

point are computed using B = ∇ψ.

Consider an elliptical cylinder of semimajor axis

xmax = 4 cm, semiminor axis ymax = 2 cm, and length

600 cm. We use bicubic interpolation to interpolate B at
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these grid points onto 120 selected angular points on the

cylinder, for each of the 4801 selected values of z. The

angular integration in (6) is performed using a Riemann

sum with N = 120. (This is necessary to ensure suffi-

cient convergence of the angular integrals to within 10−4.)

We evaluate the Fourier transform at 401 values of k in

the range [−Kc, Kc] with Kc = 20, using a spline-based

Fourier transform algorithm. We use these same points in k
space to evaluate the inverse Fourier transform, providing

a set of numerically determined functions C
[n]
m,α(z).

Suppose, for example, we wish to obtain the transfer

map for the monopole doublet through terms of degree 7.

We then require the generalized gradient functions C
[n]
m,s(z)

with (m+n) ≤ 7. For each of these functions, we find that

the relative difference between the numerical results and

(11) is on the order of 10−4 or smaller.

The key feature of this technique is that results are rela-

tively insensitive to surface errors due to smoothing. That

is, each kernel multiplying the surface functions F� and G�

in (8) falls off rapidly with spatial frequency k. As a re-

sult, high frequency noise appearing in the grid data (and

thereby, in the boundary data) has little effect on the func-

tions C
[n]
m,α of (7). The degree of smoothing increases with

distance from the bounding surface. It has been shown, for

example, that in domains with large aspect ratio, the use of

an elliptical cylinder provides greater numerical smoothing

than is possible using circular cylinder techniques [3].

Applications

A less stringent test of the accuracy of this procedure

(but also a test of the quality of the magnetic data on the

mesh) is that the magnetic field computed from the sur-

face data should reproduce the magnetic field at the in-

terior grid points. We computed such an interior fit for

the modified CESR-c design of the Cornell wiggler, which

has been adopted as the design prototype for use in In-

ternational Linear Collider studies. Cornell provided data

obtained from the 3-dimensional finite element modeling

code OPERA-3d for the field components Bx, By , and

Bz on a grid of spacing 0.4 × 0.2 × 0.2 cm in a volume

10.4 × 5.2 × 480 cm, extending beyond the fringe-field

region. An elliptic cylinder with semimajor axis 4.4 cm

and semiminor axis 2.4 cm was placed in the domain of

the data, and the field on the elliptic cylinder boundary was

constructed using nearest-neighbor interpolation with cu-

bic splines. See Fig. 1.

The interior field was computed using generalized gra-

dients through terms of degree 6 in x, y over the domain

of the original data. This solution for the interior field was

then compared to the original data at each grid point. Fig.

2 displays the fit to the vertical field By off-axis at (x, y) =
(0.4, 0.2) cm along the length of the wiggler. Note that

the fitted field captures the fringe-field behavior. The RMS

error obtained was |Bdata − Bfit|/|B|peak = 3.5× 10−4.

All other field components are fit equally well at all interior

points.

Figure 1: Schematic of the ILC wiggler and an elliptic

cylinder centered on the z-axis, fitting within the bore of

the wiggler, and extending beyond the fringe-field regions

at the ends of the wiggler.
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Figure 2: Fit obtained to proposed ILC wiggler vertical

field using the elliptic cylinder of Fig. 1. The solid line is

computed from surface data; dots are numerical data pro-

vided by OPERA-3d.

FITTING USING A BENT BOX

In this section we consider magnetic elements with large

sagitta. We employ a bent box with straight ends surround-

ing the region of the beam, but excluding all iron or other

sources (Fig. 3). Suppose B and ψ are given on a grid, and

these data are then interpolated onto the boundary of the

box, which we call Γ. Given such values on Γ, the vector

potential is given as the sum of two terms, A = An + At,

where

An(r) =
∫

Γ

[n(r′) · B(r′)]Gn(r; r′,m(r′))dS′,

At(r) =
∫

Γ

ψ(r′)Gt(r; r′,n(r′))dS′. (12)

TUOCN1 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

744C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques



Here n(r′) denotes the unit normal and m(r′) = r′/r′ at

each point r′ on the surface of the box. The vector-valued

integration kernels Gn and Gt are given by [4, 8]

Gn(r; r′,m(r′)) =
m × (r − r′)

4π|r − r′|(|r − r′| − m · (r − r′))
,

Gt(r; r′,n(r′)) =
n(r′) × (r − r′)

4π|r − r′|3 . (13)

It can be verified that each kernel Gα has the two properies

∇ · Gα = 0 and ∇ × ∇ × Gα = 0 within the region

of interest, where derivatives are taken with respect to the

variable r. As a result, the vector potential A given by

(12) shares these properties. It follows that ∇ · B = 0 and

∇×B = 0, and A satisfies the Coulomb gauge condition,

for any surface data n · B and ψ, even if the data are noisy

and the surface integrals are only evaluated approximately.

Furthermore, Gn and Gt are analytic within the region of

interest, and therefore A is also analytic in this region. By

expanding the kernels Gα as power series in the transverse

variables x and y, we may obtain corresponding power se-

ries for the vector potential A.

This method has been implemented in a Fortran 90 rou-

tine [4]. This routine uses efficient truncated power series

algebra (TPSA) algorithms to compute the Taylor series of

the integral kernels (13) about each point on the design or-

bit. Each Taylor coefficient of the vector potential A at a

fixed value of z requires a single integration of the field and

potential data over the surface Γ. The resulting coefficients

may then be utilized to find design orbits and high-order

transfer maps about these orbits.

Benchmarks
The monopole doublet field generated by the scalar po-

tential (10) may be used to benchmark the technique just

described. We choose an 8.65 MeV electron reference tra-

jectory that consists of a 30 degree bend, which lies in the

midplane and passes directly through the midpoint joining

the two monopoles. See Fig. 3. We surround this refer-

ence trajectory by a bent box with a bending angle of 30

degrees. The fit was performed using a box with height 4

cm and width 8 cm. The length of the arc segment is 10

cm, and the length of each straight leg is 3.054 m.

We now interpolate B and ψ onto the surface of the bent

box, and then employ the method described in the previous

section to compute the vector potential A and its Taylor

coefficients through degree 4 about each point along the

reference trajectory, using (12). The resulting vector po-

tential is shown in Fig. 4 as a function of the longitudinal

coordinate z of the reference particle.

Using the computed power series for A, power series

for the components of B about each reference point rd are

computed using B = ∇ × A. These results can then be

compared to the known Taylor coefficients of the field. We

find that all computed coefficients through terms of degree

4 are accurate to 10−4, while the error in most coefficients

is < 10−5. In each case, this error is measured relative to

x 

z 

y 

Figure 3: Illustration of a monopole doublet and a bent box

with straight ends. The two dots denote equal and oppo-

site magnetic charges. The red curve denotes a reference

trajectory through the center of the box.

Figure 4: The vector potential of the monopole doublet il-

lustrated in Fig. 3, computed from surface data, along a

reference trajectory through the center of the bent box. In

this case Ay = 0 and only the quantities Ax (red line) and

Az (blue line) are shown.

the peak value attained by the coefficient along the refer-

ence trajectory. The error would have been smaller had a

greater number of evaluation points been utilized to com-

pute the required surface integrals.

In addition, a vector potential for the monopole doublet

can be explicitly constructed in one simple gauge [4, 5].

Using this exactly-known vector potential, a reference tra-

jectory can be computed and the transfer map determined.

This map can then be compared to the map obtained using

the surface method just described. We find agreement in

all the coefficients of the third-order transfer map of 10−4

or better. The smoothing of numerical noise, as described

earlier, can also be shown to occur in the case of the bent

box. A detailed discussion of this issue can be found in [4].

Applications

As an application of this technique, we computed an

interior fit for the 35-mm gap design of the Brookhaven
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Figure 5: Fit obtained to proposed NSLS-II dipole vertical

field using the bent box of Fig. 3. The solid line is a linear

interpolation through numerical data provided by OPERA-

3d. Dots indicate values computed from surface data.

NSLS-II dipoles. The dipole is designed to provide 3 GeV

electrons with a bend of 6 degrees. Based on the use of

Opera 3D, Brookhaven provided data on a grid with

x ∈ [−0.06, 0.06], y ∈ [−0.016, 0.016], z ∈ [−1.8, 1.8]

and spacing

hx = hy = hz = .002.

Here all quantities are in meters. Since surface methods for

general geometries require knowledge of both the field B
and the scalar potential ψ, all of these data were provided

on the grid.

The fit was performed using a box with height 0.024 m

and width 0.1 m. The length of the arc segment is 3.22 m,

and the length of each straight leg is 0.1 m. For prelimi-

nary fitting, the box was taken to be nearly straight (with a

bending angle of 0.6 degrees). The interior field was com-

puted using B = ∇ × A, where the vector potential A is

given by (12). This solution for the interior field, which is

obtained using only field and potential data on the surface

of the bent box, was then compared to the original data

at each grid point. Fig. 5 displays the fit to the vertical

field By off-axis at (x, y) = (0, 0.2) cm along the length

of the dipole. Note that the fitted field fully captures the

fringe-field behavior. The maximum error obtained was

|Bdata − Bfit|/|B|peak = 4× 10−4 along the line shown.

Using the numerically determined Taylor coefficients of

Ax, Ay , and Az , a transfer map can now be computed about

the reference trajectory through the dipole.

CONCLUSIONS
A collection of surface fitting methods has been devel-

oped for providing accurate interior field data in analytic

form based on 3-dimensional magnetic field data on a grid,

as provided by various 3-dimensional finite element field

codes. Each of these methods involves fitting field data

onto a boundary surface and continuing inward to obtain ψ
and/or A and their Taylor coefficients in a neighborhood

of the beam. These surface-fitting procedures have several

distinct advantages:

• The Maxwell equations are exactly satisfied.

• The results are manifestly analytic in all variables.

• The error is globally controlled. Both the exact and

computed fields satisfy the Laplace equation. There-

fore their difference, the error field, also satisfies the

Laplace equation, and must take its extrema on the

boundary. The fitting error on the boundary is con-

trolled, and the interior error must therefore be even

smaller.

• Interior values inferred from surface data are rela-

tively insensitive to errors/noise in the surface data. In

general, the sensitivity to noise in the data decreases

rapidly (as some high inverse power of distance) with

increasing distance from the surface, and this prop-

erty improves the accuracy of the high-order inte-

rior derivatives needed to compute high-order transfer

maps.

As a result one can, for the first time, obtain a realistic high-

order transfer map for an entire accelerator or storage ring

without the uncertainties associated with the use of only

approximate field models.

REFERENCES
[1] D. Abell, Phys. Rev. ST Accel. Beams 9 (2006) 052001.

[2] M. Venturini and A. Dragt, Nucl. Instrum. Methods A 427

387(1999)

[3] C. Mitchell and A. Dragt, Phys. Rev. ST Accel. Beams 13

[4] C. Mitchell, “Calculation of Realistic Charged-Particle

Transfer Maps,” Ph. D. thesis, University of Maryland, Col-

lege Park (2007), http://www.physics.umd.edu/dsat/.

[5] A. Dragt, Lie Methods for Nonlinear Dynam-
ics with Applications to Accelerator Physics, Uni-

versity of Maryland Technical Report (2009),

http://www.physics.umd.edu/dsat/.

[6] M. Abramowitz and I. Stegun, Handbook of Mathematical
Formulas and Integrals (Academic Press, 1995).

[7] N. McLachlan, Theory and Application of Mathieu Functions
(Dover Publications, Inc., 1964).

[8] A. Dragt, T. Stasvevich, and P. Walstrom, “Computation of

charged-particle transfer maps for general fields and geome-

tries using electromagnetic boundary-value data,” PAC‘01,

Chicago, IL, June 2001, p. 1776 (2001).

(2010) 064001.

.

TUOCN1 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

746C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques


