Keyword: solenoid
Paper Title Other Keywords Page
MOP001 Charge Separation for Muon Collider Cooling emittance, collider, simulation, acceleration 103
 
  • R. B. Palmer, R.C. Fernow
    BNL, Upton, Long Island, New York, USA
 
  Most schemes for six dimensional muon ionization cooling work for only one sign. It is then necessary to have charge separation prior to that cooling. Schemes of charge separation using bent solenoids are described, and their simulated performances reported. It is found that for efficient separation, it should take place at somewhat higher momenta than commonly used for the cooling.  
 
MOP002 Tapered Six-Dimensional Cooling Channel for a Muon Collider emittance, collider, simulation, lattice 106
 
  • R. B. Palmer, R.C. Fernow
    BNL, Upton, Long Island, New York, USA
 
  A high-luminosity muon collider requires a reduction of the six-dimensional emittance of the captured muon beam by a factor of approximately 106. Most of this cooling takes place in a dispersive channel that simultaneously reduces all six phase space dimensions. We describe a tapered 6D cooling channel that should meet the requirements of a muon collider. The parameters of the channel are given and preliminary simulations are shown of the expected performance.  
 
MOP017 A Sphere Cooler Scheme for Muon Cooling collider, factory, simulation, high-voltage 139
 
  • Y. Bao
    MPI, Muenchen, Germany
  • A. Caldwell, D. Greenwald
    MPI-P, München, Germany
 
  Muon cooling is the greatest obstacle for producing an intensive muon beam. The frictional cooling method holds promise for delivering low-energy muon beams with narrow energy spreads. We outline a sphere cooler scheme based on frictional cooling to effectively produce such a “cold” muon beam. As an example source, we take the parameters of a surface muon source available at the Paul Scherrer Institute. Simulation results show that the sphere cooler has an efficiency of 50% to produce a “cold” muon beam with an energy spread of 0.9 keV. The high quality beam can potentially meet the requirements of a neutrino factory or a muon collider.  
 
MOP022 The Expected Performance of MICE Step IV emittance, optics, scattering, lattice 151
 
  • T. Carlisle, J.H. Cobb
    JAI, Oxford, United Kingdom
 
  Funding: STFC
The international Muon Ionization Cooling Experiment (MICE), under construction at the Rutherford Appleton Laboratory in Oxfordshire (UK), is a test of a prototype cooling channel for a future Neutrino Factory. The experiment aims to achieve, using liquid hydrogen absorbers, a 10% reduction in transverse emittance, measured to an accuracy of 1% by two scintillating fibre trackers within 4 T solenoid fields. Step IV of MICE will begin in 2012, producing the experiment's first cooling measurements. Step IV uses an absorber focus coil module, placed between the two trackers, to house liquid hydrogen or solid absorbers. The performance of Step IV using various absorber materials was simulated. Multiple scattering in high Z absorbers was found to mismatch the beam with the lattice optics, which was largely corrected by re-tuning the MICE lattice accordingly.
 
 
MOP023 Particle Tracking and Beam Matching Through the New Variable Thickness MICE Diffuser emittance, factory, collider, target 154
 
  • V. Blackmore, J.H. Cobb, M. Dawson, J. Tacon, M. Tacon
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
 
  The Muon Ionisation Cooling Experiment (MICE) aims to demonstrate the transverse cooling of muons for a possible future Neutrino Factory or Muon Collider. The diffuser is an integral part of the MICE cooling channel. It aims to inflate the emittance of the incoming beam such that cooling can later be measured in the MICE channel. A novel new diffuser design is currently in development at Oxford, consisting of a high density scatterer of variable radiation lengths. Simulations have been carried out in order to fully understand the physics processes involved with the new diffuser design and to enable a proper matching of the beam to the MICE channel.  
 
MOP032 High Pressure RF Cavity Test at Fermilab cavity, pick-up, proton, instrumentation 160
 
  • B.T. Freemire, P.M. Hanlet, Y. Torun
    IIT, Chicago, Illinois, USA
  • G. Flanagan, R.P. Johnson, M. Notani
    Muons, Inc, Batavia, USA
  • M.R. Jana, A. Moretti, M. Popovic, A.V. Tollestrup, K. Yonehara
    Fermilab, Batavia, USA
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: Supported in part by DOE STTR grant DE-FG02-08ER86350
Operating a high gradient radio frequency cavity embedded in a strong magnetic field is an essential requirement for muon beam cooling. However, a magnetic field influences the maximum RF gradient due to focusing of dark current in the RF cavity. This problem is suppressed by filling the RF cavity with dense hydrogen gas. As the next step, we plan to explore the beam loading effect in the high pressure cavity by using a 400 MeV kinetic energy proton beam in the MuCool Test Area at Fermilab. We discuss the experimental setup and instrumentation.
 
 
MOP047 Helical Channels with Variable Slip Factor for Neutrino Factories and Muon Colliders simulation, collider, longitudinal-dynamics, target 187
 
  • C. Y. Yoshikawa, C.M. Ankenbrandt
    Muons, Inc, Batavia, USA
  • D.V. Neuffer, K. Yonehara
    Fermilab, Batavia, USA
 
  Funding: Supported in part by DOE SBIR grant DE-SC0002739.
In order to realize a muon collider or a neutrino factory based on a muon storage ring, the muons must be captured and cooled efficiently. For a muon collider, the resulting train of bunches should be coalesced into a single bunch. Design concepts for a system to capture, cool, and coalesce a muon beam are described here. In particular, variants of a helical channel are used, taking advantage of the ability to vary the slip factor and other parameters of such a channel. The cooling application has been described before; this paper reports recent studies of a system that includes two novel concepts to accomplish capture and coalescing via a slip-controlled helical channel.
 
 
MOP054 Racetrack Muon Ring Cooler Using Dipoles and Solenoids for a Muon Collider dipole, lattice, simulation, collider 202
 
  • X.P. Ding, D.B. Cline
    UCLA, Los Angeles, California, USA
  • J.S. Berg, H.G. Kirk
    BNL, Upton, Long Island, New York, USA
  • A.A. Garren
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: DOE Grant No. DE-FG02-92ER40695
A racetrack muon ring cooler for a muon collider is considered. The achromatic cooler uses both dipoles and solenoids. We describe the ring lattice and show the results of beam dynamic simulation that demonstrates a large aperture for acceptance. We also examine the 6D cooling of the muon beam in the cooler and discuss the prospects for the future.
 
 
MOP055 Robust 6D Muon Cooling in Four-sided Ring Cooler using Solenoids and Dipoles for a Muon Collider collider, dipole, emittance, lattice 205
 
  • X.P. Ding, D.B. Cline
    UCLA, Los Angeles, California, USA
  • J.S. Berg, H.G. Kirk
    BNL, Upton, Long Island, New York, USA
  • A.A. Garren
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: DOE Grant No. DE-FG02-92ER40695
We present a four-sided ring cooler that employs both dipoles and solenoids to provide robust 6D muon cooling of large emittance beams in order to design and build a muon collider. Our studies show strong 6D cooling adequate for components of a muon collider front end.
 
 
MOP146 Investigation of Synchro-Betatron Couplings at S-LSR betatron, laser, coupling, synchrotron 367
 
  • K. Jimbo
    Kyoto IAE, Kyoto, Japan
  • T. Hiromasa, M. Nakao, A. Noda, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
 
  Tune couplings of beam were observed at S-LSR, Kyoto University. Synchrotron oscillation in the longitudinal direction and betatron oscillation in the horizontal direction was intentionally coupled in a drift tube located at the finite dispersive section. Horizontal and vertical coupling of betatron oscillation was also observed. This fact is a good sign of 3-D couplings to achieve a theoretically predicted crystal beam through the resonant coupling method for transverse laser cooling.  
 
MOP209 Proposed Scattered Electron Detector System as One of the Beam Overlap Diagnostic Tools for the New RHIC Electron Lens electron, proton, scattering, diagnostics 489
 
  • P. Thieberger, E.N. Beebe, C. Chasman, W. Fischer, D.M. Gassner, X. Gu, R.C. Gupta, J. Hock, R.F. Lambiase, Y. Luo, M.G. Minty, C. Montag, M. Okamura, A.I. Pikin, Y. Tan, J.E. Tuozzolo, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
An electron lens for head-on beam-beam compensation planned for RHIC requires precise overlap of the electron and proton beams which both can have down to 0.3 mm rms transverse radial widths along the 2m long interaction region. Here we describe a new diagnostic tool that is being considered to aid in the tuning and verification of this overlap. Some of ultra relativistic protons (100 or 250 GeV) colliding with low energy electrons (2 to 10 keV) will transfer sufficient transverse momentum to cause the electrons to spiral around the magnetic guiding field in a way that will make them detectable outside of the main solenoid. Time-of-flight of the halo electron signals will provide position-sensitive information along the overlap region. Scattering cross sections are calculated and counting rate estimates are presented as function of electron energy and detector position.
 
 
MOP225 Initial Characterization of a Commercial Electron Gun for Profiling High Intensity Proton Beams in Project X electron, proton, gun, emittance 525
 
  • R.M. Thurman-Keup, A.S. Johnson, A.H. Lumpkin, J.C.T. Thangaraj, D.H. Zhang
    Fermilab, Batavia, USA
  • W. Blokland
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Measuring the profile of a high intensity proton beam is problematic in that traditional invasive techniques such as flying wires don't survive the encounter with the beam. One alternative is the use of an electron beam as a probe of the charge distribution in the proton beam as was done at the Spallation Neutron Source at ORNL. Here we present an initial characterization of the beam from a commercial electron gun from Kimball Physics, intended for use in the Fermilab Main Injector for Project X.
 
 
TUOAN1 SuperB: Next-Generation e+e B-factory Collider emittance, luminosity, quadrupole, collider 690
 
  • A. Novokhatski, K.J. Bertsche, A. Chao, Y. Nosochkov, J.T. Seeman, M.K. Sullivan, U. Wienands, W. Wittmer
    SLAC, Menlo Park, California, USA
  • M.A. Baylac, O. Bourrion, N. Monseu, C. Vescovi
    LPSC, Grenoble, France
  • S. Bettoni
    CERN, Geneva, Switzerland
  • M.E. Biagini, R. Boni, M. Boscolo, T. Demma, A. Drago, M. Esposito, S. Guiducci, M.A. Preger, P. Raimondi, S. Tomassini, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • A.V. Bogomyagkov, E.B. Levichev, S.A. Nikitin, P.A. Piminov, D.N. Shatilov, S.V. Sinyatkin, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
  • B. Bolzon, L. Brunetti, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux, France
  • A. Chancé
    CEA, Gif-sur-Yvette, France
  • P. Fabbricatore, S. Farinon, R. Musenich
    INFN Genova, Genova, Italy
  • S.M. Liuzzo, E. Paoloni
    University of Pisa and INFN, Pisa, Italy
  • I.N. Okunev
    BINP, Novosibirsk, Russia
  • F. Poirier, C. Rimbault, A. Variola
    LAL, Orsay, France
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.
The SuperB international team continues to optimize the design of an electron-positron collider, which will allow the enhanced study of the origins of flavor physics. The project combines the best features of a linear collider (high single-collision luminosity) and a storage-ring collider (high repetition rate), bringing together all accelerator physics aspects to make a very high luminosity of 1036 cm-2 s-1. This asymmetric-energy collider with a polarized electron beam will produce hundreds of millions of B-mesons at the Y(4S) resonance. The present design is based on extremely low emittance beams colliding at a large Piwinski angle to allow very low ßy* without the need for ultra short bunches. Use of crab-waist sextupoles will enhance the luminosity, suppressing dangerous resonances and allowing for a higher beam-beam parameter. The project has flexible beam parameters, improved dynamic aperture, and spin-rotators in the Low Energy Ring for longitudinal polarization of the electron beam at the Interaction Point. Optimized for best colliding-beam performance, the facility may also provide high-brightness photon beams for synchrotron-radiation applications.
 
slides icon Slides TUOAN1 [9.378 MB]  
 
TUOCN2 Spin-Manipulating Polarized Deuterons resonance, polarization, dipole, electron 747
 
  • V.S. Morozov
    JLAB, Newport News, Virginia, USA
  • A. Chao
    SLAC, Menlo Park, California, USA
  • F. Hinterberger
    Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, Bonn, Germany
  • A.M. Kondratenko
    GOO Zaryad, Novosibirsk, Russia
  • A.D. Krisch, M.A. Leonova, R.S. Raymond, D.W. Sivers, V.K. Wong
    University of Michigan, Spin Physics Center, Ann Arbor, MI, USA
  • E.J. Stephenson
    IUCF, Bloomington, Indiana, USA
 
  Funding: This research was supported by grants from the German BMBF Science Ministry, its JCHP-FFE program at COSY and the US DOE.
Spin dynamics of polarized deuteron beams near depolarization resonances, including a new polarization preservation concept based on specially-designed multiple resonance crossings, has been tested in a series of experiments in the COSY synchrotron. Intricate spin dynamics with sophisticated pre-programmed patterns as well as effects of multiple crossings of a resonance were studied both theoretically and experimentally with excellent agreement. Possible applications of these results to preserve, manipulate and spin-flip polarized beams in synchrotrons and storage rings are discussed.
 
slides icon Slides TUOCN2 [4.921 MB]  
 
TUP020 A New Continuous Muon Beam Line Using a Highly Efficient Pion Capture System at RCNP target, proton, simulation, dipole 856
 
  • H. Sakamoto, Y. Kuno, A. Sato
    Osaka University, Osaka, Japan
  • S. Cook, R.T.P. D'Arcy
    UCL, London, United Kingdom
  • M. Fukuda, K. Hatanaka
    RCNP, Osaka, Japan
  • T. Ogitsu, A. Yamamoto, M.Y. Yoshida
    KEK, Ibaraki, Japan
 
  A new muon source with continuous time structure is under construction at Research Center of Nuclear Physics (RCNP), Osaka University. The ring cyclotron of RCNP can provide 400W 400MeV proton beam. Using this proton beam, the MuSIC produces a high intense muon beam. The target muon intensity is 108 muons/second, which is achieved by a pion capture with great efficiency to collect pions and muons using a solenoidal magnetic field. A pion production target system is located in a 3.5 Tesla solenoidal magnetic field generated by a super-conducting solenoid magnet. The proton beam hits the target, and backward pions and muons are captured by the field. Then they are transported by a curved solenoid beam line to experimental apparatus. The construction has been started in 2010, and would be finished in 5 years. We plan to carry out not only an experiment to search the lepton flavor violating process but also other experiments for muon science and their applications using the intense muon beam.  
 
TUP025 Two Wien Filter Spin Flipper electron, polarization, target, laser 862
 
  • J.M. Grames, P.A. Adderley, J. F. Benesch, J. Clark, J. Hansknecht, R. Kazimi, D. Machie, M. Poelker, M.L. Stutzman, R. Suleiman, Y. Zhang
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
A new 4pi spin manipulator composed of two Wien filters oriented orthogonally and separated by two solenoids has been installed at the CEBAF/Jefferson Lab photoinjector. The new spin manipulator is used to precisely set the electron spin direction at an experiment in any direction (in or out of plane of the accelerator) and provides the means to reverse, or flip, the helicity of the electron beam on a daily basis. This reversal is being employed to suppress systematic false asymmetries that can jeopardize challenging parity violation experiments that strive to measure increasingly small physics asymmetries [*,**,***]. The spin manipulator is part of the ultra-high vacuum polarized electron source beam line and has been successfully operated with 100keV and 130keV electron beam at high current (>100 microAmps). A unique feature of the device is that spin-flipping requires only the polarity of one solenoid magnet be changed. Performance characteristics of the Two Wien Filter Spin Flipper will be summarized.
* http://hallaweb.jlab.org/parity/prex/
** http://www.jlab.org/qweak/
*** http://hallaweb.jlab.org/12GeV/Moller/
 
 
TUP079 Cryomodule Design for 325 MHz Superconducting Single Spoke Cavities and Solenoids cryomodule, cavity, vacuum, cryogenics 970
 
  • T.H. Nicol, S. Cheban, R.L. Madrak, F. McConologue, T.J. Peterson, V. Poloubotko, L. Ristori, W. Schappert, I. Terechkine, B.A. Vosmek
    Fermilab, Batavia, USA
 
  Funding: U.S. Department of Energy
The low-beta section of the linac being considered for Project X at Fermilab contains several styles of 325 MHz superconducting single spoke cavities and solenoid based focusing lenses, all operating at 2 K. Each type of cavity and focusing lens will eventually be incorporated into the design of cryomodules unique to various sections of the linac front end. This paper describes the design of a multiple-cavity and solenoid cryomodule being developed to test the function of each of the main cryomodule systems – cryogenic systems and instrumentation, cavity and lens positioning and alignment, conduction-cooled current leads, magnetic shielding, cold-to-warm beam tube transitions, interfaces to interconnecting equipment and adjacent modules, as well as evaluation of overall assembly procedures.
 
 
TUP083 Phase and Frequency Locked Magnetrons for SRF Sources resonance, SRF, insertion, controls 979
 
  • M. Popovic, A. Moretti
    Fermilab, Batavia, USA
  • M.A.C. Cummings, A. Dudas, R.P. Johnson, M.L. Neubauer, R. Sah
    Muons, Inc, Batavia, USA
 
  Funding: Supported in part by STTR Grant DE-SC0002766
In order to make use of ferrite and/or garnet materials in the phase and frequency locked magnetron, for which Muons, Inc., received a Phase II award, materials must be tested in two orthogonal magnetic fields. One field is from the biasing field of the magnetron, the other from the biasing field used to control the ferrite within the anode structure of the magnetron. A test fixture was built and materials are being tested to determine their suitability. The status of those material tests are reported on in this paper.
 
 
TUP095 Adjustable High Power Coax Coupler without Moving Parts cavity, insertion, radio-frequency, vacuum 1009
 
  • M.L. Neubauer, A. Dudas, R. Sah
    Muons, Inc, Batavia, USA
  • R. Nassiri
    ANL, Argonne, USA
 
  An RF power coupler is designed to operate without moving parts. This new concept for an adjustable coupler is applicable to operation at any radiofrequency. CW operation of such a coupler is especially challenging at lower frequencies. The basic component of the coupler is a ferrite tuner. The RF coupler has no movable parts and relies on a ferrite tuner assembly, coax TEE, and double windows to provide a VSWR of better than 1.05:1 and a bandwidth of at least 8 MHz at 1.15:1. The ferrite tuner assembly on the stub end of the coax TEE uses an applied DC magnetic field to change the Qext and the RF coupling coefficient between the RF input and the cavity. Recent work in making measurements of the loss in the ferrite and likely thermal dissipation required for 100 kW CW operation is presented.  
 
TUP153 Fabrication and Test of Short Helical Solenoid Model Based on YBCO Tape insertion, cavity, target, collider 1118
 
  • M. Yu, V. Lombardo, M.L. Lopes, D. Turrioni, A.V. Zlobin
    Fermilab, Batavia, USA
  • G. Flanagan, R.P. Johnson
    Muons, Inc, Batavia, USA
 
  Funding: Supported in part by USDOE STTR Grant DE-FG02-07ER84825 and by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
A helical cooling channel (HCC) is a new technique proposed for six-dimensional (6D) cooling of muon beams. To achieve the optimal cooling rate, the high field section of HCC need to be developed, which suggests using High Temperature Superconductors (HTS). This paper updates the parameters of a YBCO based helical solenoid (HS) model, describes the fabrication of HS segments (double-pancake units) and the assembly of six-coil short HS model with two dummy cavity insertions. Three HS segments and the six-coil short model were tested. The results are presented and discussed.
 
 
TUP163 Design Construction and Test Results of a HTS Solenoid for Energy Recovery Linac cavity, focusing, superconducting-cavity, linac 1127
 
  • R.C. Gupta, M. Anerella, I. Ben-Zvi, G. Ganetis, D. Kayran, G.T. McIntyre, J.F. Muratore, S.R. Plate, W. Sampson
    BNL, Upton, Long Island, New York, USA
  • M.D. Cole, D. Holmes
    AES, Medford, NY, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
An innovative feature of the proposed Energy Recovery Linac (ERL) at Brookhaven National Laboratory (BNL) is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The use of HTS in the solenoid offers many advantages. The solenoid is located in the transition region (4 K to room temperature) where the temperature is too high for a conventional low temperature superconductor and the heat load on the cryogenic system too high for copper coils. Proximity to the cavity provides early focusing and thus a reduction in the emittance of the electron beam. In addition, taking full advantage of the high critical temperature of HTS, the solenoid has been designed to reach the required field at ~77 K, which can be obtained with liquid nitrogen. This significantly reduces the cost of testing and allows a variety of critical pre‐tests (e.g. measurements of the axial and fringe fields) which would have been very expensive at 4 K in liquid helium because of the additional requirements for a cryostat and associated facilities. This paper will present the design, construction, test results and current status of this HTS solenoid.
 
 
TUP164 Magnetic Design of e-lens Solenoid and Corrector System for RHIC dipole, electron, proton, superconducting-magnet 1130
 
  • R.C. Gupta, M. Anerella, W. Fischer, G. Ganetis, A.K. Ghosh, X. Gu, A.K. Jain, P. Kovach, A. Marone, A.I. Pikin, S.R. Plate, P. Wanderer
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
As a part of the proposed electron lens system for RHIC, two 6 T, 200 mm aperture, 2.5 meter long superconducting solenoids are being designed and built at BNL. Because of several demanding requirements this has become a unique and technologically advanced magnet. For example, the field lines on axis must be straight over the length of the solenoid within ±50 microns. Since this is beyond the normal construction techniques, a correction package becomes an integral part of the design for which a new design has been developed. In addition, a minimum of 0.3 T field is required along the electron beam trajectory in the space between magnets. To achieve this fringe field superconducting solenoidal coils have been added at the two ends of the main solenoid. The main solenoid itself is a challenging magnet because of the high Lorentz forces and stored energy associated with the large aperture and high fields. An innovative structure has been developed to deal with the large axial forces at the ends. This paper will summarize the magnetic design and optimization of the entire package consisting of the main solenoid, the fringe field solenoids, and the corrector system.
 
 
TUP169 The Effect of Axial Stress on YBCO Coils alignment, collider 1139
 
  • W. Sampson, M. Anerella, J.P. Cozzolino, R.C. Gupta, Y. Shiroyanagi
    BNL, Upton, Long Island, New York, USA
  • E. Evangelou
    The Bronx High School of Science, Bronx, New York, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
A spiral wound “pancake” coil made from YBCO coated conductor has been stressed to a pressure of 100MPa in the axial direction at 77K. In this case axial refers to the coil so that the force is applied to the edge of the conductor. The effect on the critical current was small and completely reversible. Repeatedly cycling the pressure had no measureable permanent effect on the coil. The small current change observed exhibited a slight hysteretic behaviour during the loading cycle.
 
 
TUP172 Studies of High-field Sections of a Muon Helical Cooling Channel with Coil Separation target, dipole, cavity, superconductivity 1148
 
  • M.L. Lopes, V.S. Kashikhin, K. Yonehara, M. Yu, A.V. Zlobin
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
The Helical Cooling Channel (HCC) was proposed for 6D cooling of muon beams required for muon collider and some other applications. HCC uses a continuous absorber inside superconducting magnets which produce solenoidal field superimposed with transverse helical dipole and helical gradient fields. HCC is usually divided into several sections each with progressively stronger fields, smaller aperture and shorter helix period to achieve the optimal muon cooling rate. This paper presents the design issues of the high field section of HCC with coil separation. The effect of coil spacing on the longitudinal and transverse field components is presented and its impact on the muon cooling is evaluated and discussed. The paper also describes methods for field corrections and their practical limits.
 
 
TUP173 Progress on the Modeling and Modification of the MICE Superconducting Spectrometer Solenoids radiation, simulation, emittance, focusing 1151
 
  • S.P. Virostek, M.A. Green, T.O. Niinikoski, S. Prestemon, M.S. Zisman
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC02-05CH11231.
The Muon Ionization Cooling Experiment (MICE) is an international effort sited at Rutherford Appleton Laboratory (RAL) in the UK that will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. The spectrometer solenoids are an identical pair of five-coil superconducting magnets that will provide a 4-tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within each of the 400-mm diameter magnet bore tubes will measure the emittance of the beam as it enters and exits the cooling channel. Each of the 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section that matches the solenoid uniform field into the MICE cooling channel. The cold mass, radiation shield and leads are kept cold by means of a series of two-stage cryocoolers and one single-stage cryocooler. Various thermal, electrical and magnetic analyses are being carried out in order to develop design improvements related to magnet cooling and reliability. The key features of the spectrometer solenoid magnets are presented along with some of the details of the analyses.
 
 
TUP207 The Effects of the RHIC E-lenses Magnetic Structure Layout on the Proton Beam Trajectory proton, electron, lattice, closed-orbit 1202
 
  • X. Gu, W. Fischer, R.C. Gupta, J. Hock, Y. Luo, M. Okamura, A.I. Pikin, D. Raparia
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We are designing two electron lenses (E-lens) to compensate for the large beam-beam tune spread from proton-proton interactions at IP6 and IP8 in the Relativistic Heavy Ion Collider (RHIC). They will be installed in RHIC IR10. First, the layout of these two E-lenses is introduced. Then the effects of e-lenses on proton beam are discussed. For example, the transverse fields of the e-lens bending solenoids and the fringe field of the main solenoids will shift the proton beam. For the effects of the e-lens on proton beam trajectory, we calculate the transverse kicks that the proton beam receives in the electron lens via Opera at first. Then, after incorporating the simplified E-lens lattice in the RHIC lattice, we obtain the closed orbit effect with the Simtrack Code.
 
 
TUP208 DESIGNING A BEAM TRANSPORT SYSTEM FOR RHIC’S ELECTRON LENS electron, dipole, controls, beam-transport 1205
 
  • X. Gu, W. Fischer, R.C. Gupta, J. Hock, Y. Luo, M. Okamura, A.I. Pikin, D. Raparia
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
We designed two electron lenses to apply head-on beam-beam compensation for RHIC; they will be installed near IP10. The electron-beam transport system is an important subsystem of the entire electron-lens system. Electrons are transported from the electron gun to the main solenoid and further to the collector. The system must allow for changes of the electron beam size inside the superconducting magnet, and for changes of the electron position by 5 mm in the horizontal- and vertical-planes.
 
 
TUP228 Design of the EBIS Vacuum System vacuum, ion, controls, electron 1247
 
  • M. Mapes, L. Smart, D. Weiss
    BNL, Upton, Long Island, New York, USA
 
  At Brookhaven National Labratory the Electron Beam Ion Source (EBIS) is presently being commisioned. The EBIS will be a new heavy ion pre-injector for the Realativistic Heavy Ion Collider (RHIC). The new pre-injector has the potential for significant future intensity increases and can produce heavy ion beams of all species including uranium. The background pressure in the ionization region of the EBIS should be low enough that it does not produce a significant number of ions from background gas. The pressure in the regions of the electron gun and electron collector can be higher than in the ionization region provided there is efficient vacuum separation between the sections. For injection the ions must be accelerated to 100KV by pulsing the EBIS platform. All associated equipment including the vacuum equipment on the platform will be at a 100KV potential. The vacuum system design and the vacuum controls for the EBIS platform and transport system will be presented as well as the interface with the Booster Ring which has a pressure 10-11 Torr.  
 
TUP265 A Solenoid Capture System for a Muon Collider target, proton, factory, collider 1316
 
  • H.G. Kirk, R.C. Fernow, N. Souchlas
    BNL, Upton, Long Island, New York, USA
  • J.J. Back
    University of Warwick, Coventry, United Kingdom
  • C.J. Densham, P. Loveridge
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • X.P. Ding
    UCLA, Los Angeles, California, USA
  • V.B. Graves
    ORNL, Oak Ridge, Tennessee, USA
  • T. Guo, F. Ladeinde, V. Samulyak, Y. Zhan
    SUNY SB, Stony Brok, New York, USA
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
  • R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: This work was supported in part by the US DOE Contract No. DE-AC02-98CH10886.
The concept for a muon-production system for a muon collider or neutrino factory calls for an intense 4-MW-class proton beam impinging upon a free-flowing mercury jet immersed in a 20-T solenoid field. This system is challenging in many aspects, including magnetohydrodynamics of the mercury jet subject to disruption by the proton beam, strong intermagnetic forces, and the intense thermal loads and substantial radiation damage to the magnet coils due to secondary particles from the target. Studies of these issues are ongoing, with a sketch of their present status given here.
 
 
WEP006 Study of Effects of Failure of Beamline Elements & Their Compensation in CW Superconducting Linac cavity, linac, emittance, beam-losses 1513
 
  • A. Saini, K. Ranjan
    University of Delhi, Delhi, India
  • C.S. Mishra, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Project-X is the proposed high intensity proton facility to be built at Fermilab, US. The first stage of the Project-X consists of superconducting Linac which will be operated in continuous wave (CW) mode to accelerate the beam from 2.5 MeV to 3 GeV. The operation at CW mode puts high tolerances on the beam line components, particularly on radiofrequency (RF) cavity. The failure of beam line elements at low energy is very critical as it results in mis-match of the beam with the following sections due to different beam parameters than designed parameter. It makes the beam unstable which causes emittance dilution, and ultimately results in beam losses. In worst case, it could affect the reliability of the machine and may lead to the shutdown of the Linac to replace the failed elements. Thus, it is important to study these effects and their compensation to get smooth beam propagation in Linac. This paper describes the results of study performed for the failure of RF cavity & solenoid in SSR0 section.  
 
WEP038 Physics Design of a Prototype 2-Solenoid LEBT for the SNS Injector rfq, ion, simulation, beam-transport 1564
 
  • B. Han, D.J. Newland
    ORNL RAD, Oak Ridge, Tennessee, USA
  • T. Hunter, M.P. Stockli
    ORNL, Oak Ridge, Tennessee, USA
 
  To mitigate the operational risks associated with the SNS electrostatic LEBT, an R&D effort is underway to develop a 2-solenoid magnetic LEBT, which should improve the reliability while matching or exceeding the beam dynamic capabilities of the present electrostatic LEBT. This paper discusses the physics design of a prototype 2-solenoid magnetic LEBT.  
 
WEP095 Analysis of the Beam Loss Mechanism in the Project-X Linac linac, quadrupole, beam-losses, simulation 1651
 
  • N. Solyak, J.-P. Carneiro, V.A. Lebedev, S. Nagaitsev, J.-F. Ostiguy
    Fermilab, Batavia, USA
 
  Minimization of the beam losses in a multi-MW H-minus linac of the Project X to the level below 1W/m is a challenging task. Analysis of different mechanisms of beam stripping, including stripping in electric and magnetic fields, residual gas, black-body radiation and intra-beam stripping, is analyzed. Other sources of beam losses are misalignment of beamline elements and errors in RF fields and phase. We presented the requirements for dynamics errors and correction schemes to keep beam losses under control  
 
WEP111 Beam Breakup in Dielectric Wakefield Accelerating Structures: Modeling and Experiments simulation, wakefield, controls, focusing 1689
 
  • P. Schoessow, C.-J. Jing, A. Kanareykin, A.L. Kustov
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • A. Altmark
    LETI, Saint-Petersburg, Russia
  • W. Gai, J.G. Power
    ANL, Argonne, USA
 
  Funding: Work supported by USDOE SBIR program.
Beam breakup (BBU) effects resulting from parasitic wakefields limit considerably the intensity of the drive beam that can be transported through a dielectric accelerating structure and hence the accelerating field that can be achieved. We have been developing techniques to control BBU effects using a quadrupole channel or solenoid surrounding the wakefield device. We report here on the status of simulations and experiments on BBU and its mitigation, emphasizing an experiment at the Argonne Wakefield Accelerator facility using a 26 GHz dielectric wakefield device fitted with a solenoid to control BBU. We present calculations based on a particle-Green’s function beam dynamics code (BBU-3000) that we are developing. The code allows rapid, efficient simulation of BBU effects in advanced linear accelerators.
 
 
WEP195 Time Resolved Measurement of Electron Clouds at CesrTA using Shielded Pickups electron, pick-up, vacuum, positron 1855
 
  • J.P. Sikora, M.G. Billing, J.A. Crittenden, Y. Li, M.A. Palmer
    CLASSE, Ithaca, New York, USA
  • S. De Santis
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the US National Science Foundation PHY-0734867, and the US Department of Energy DE-FC02-08ER41538.
The Cornell Electron Storage Ring has been reconfigured as a Test Accelerator (CesrTA). Shielded pickups have been installed at three locations in CesrTA for the purpose of studying time resolved electron cloud build-up and decay. The pickup design provides electromagnetic shielding from the beam wakefield while allowing cloud electrons in the vacuum space to enter the detector. This paper describes the hardware configuration and capabilities of these detectors at CesrTA, presents examples of measurements, and outlines the interpretation of detector signals with regard to electron clouds. Useful features include time-of-flight measurement of cloud electrons and the use of a solenoidal field for energy measurement of photoelectrons. Measurement techniques include the use of two bunches spaced in multiples of 4ns, where the second bunch samples the decay of the cloud produced by the first bunch.
 
 
WEP210 Low Energy Beam Measurements Using PHIL Accelerator at LAL, Comparison with PARMELA Simulations simulation, laser, gun, emittance 1885
 
  • J. Brossard, F. Blot, C. Bruni, S. Cavalier, J-N. Cayla, A. Gonnin, M. Joré, P. Lepercq, S.B. Letourneur, B.M. Mercier, H. Monard, C. Prevost, R. Roux, A. Variola
    LAL, Orsay, France
 
  PHIL (“PHoto-Injector at LAL") is a new electron beam accelerator at LAL. This accelerator is dedicated to test and characterize electron RF-guns and to deliver electron beam to users. This machine has been designed to produce and characterise low energy (E<10 MeV), small emittance (e<10 p.mm.mrad), high brilliance electrons bunch at low repetition frequency (n<10Hz). The first beam has been obtained on the 4th of November 2009. The current RF-gun tested on PHIL is the AlphaX gun, a 2.5 cell S-band cavity designed by LAL for the plasma accelerator studies performed at the Strathclyde university. This paper will present the first AlphaX RF-gun characterizations performed at LAL on PHIL accelerator, and will show comparisons between measurements and PARMELA simulations.  
 
WEP229 Status of 2 MeV Electron Cooler for COSY-Julich/HESR electron, high-voltage, antiproton, proton 1918
 
  • J. Dietrich, V. Kamerdzhiev
    FZJ, Jülich, Germany
  • M.I. Bryzgunov, A.D. Goncharov, V.M. Panasyuk, V.V. Parkhomchuk, V.B. Reva, D.N. Skorobogatov
    BINP SB RAS, Novosibirsk, Russia
 
  The 2 MeV electron cooling system for COSY-Jülich was proposed to further boost the luminosity even in presence of strong heating effects of high-density internal targets. The 2 MeV cooler is also well suited in the start up phase of the High Energy Storage Ring (HESR) at FAIR in Darmstadt. It can be used for beam cooling at injection energy and is intended to test new features of the high energy electron cooler for HESR. The project is funded since mid 2009. The design and construction of the cooler is accomplished in cooperation with the Budker Institute of Nuclear Physics in Novosibirsk, Russia. The technical layout of the 2 MeV electron cooler is described. The infrastructure necessary for the operation of the cooler in the COSY ring (radiation shielding, cabling, water cooling etc.) is established. The electron beam commissioning at BINP Novosibirsk is scheduled to start at the end of 2010. First results are reported.  
 
WEP243 Status of the Neutralized Drift Compression Experiment (NDCX-II) induction, ion, target, pulsed-power 1939
 
  • W.L. Waldron, J.W. Kwan
    LBNL, Berkeley, California, USA
 
  Funding: This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344, by LBNL under Contract DE-AC02-05CH11231, and by PPPL under Contract DE-AC02-76CH03073.
The Neutralized Drift Compression Experiment (NDCX-II) is an induction accelerator project currently in construction at Lawrence Berkeley National Laboratory for warm dense matter (WDM) experiments investigating the interaction of ion beams with matter at high temperature and pressure. The machine consists of a lithium injector, induction accelerator cells, diagnostic cells, a neutralized drift compression line, a final focus solenoid, and a target chamber. The machine relies on a sequence of acceleration waveforms to longitudinally compress the initial ion pulse from 600 ns to less than 1 ns in ~ 12 meters. Radial confinement of the beam is achieved with 2.5 T solenoids. In the initial hardware configuration, 30-50 nC of Li+ will be accelerated to 1.2 MeV and allowed to drift-compress to a peak current of ~ 20 A. Construction of the accelerator will be completed in the summer of 2011 and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel beam manipulations for heavy ion fusion drivers. The basic design of the machine and the current status of the construction project will be presented.
 
 
WEP245 Optimization of DC Photogun Electrode Geometry cathode, focusing, gun, emittance 1945
 
  • J.M. Maxson
    Cornell University, Ithaca, New York, USA
  • I.V. Bazarov, B.M. Dunham, K.W. Smolenski
    CLASSE, Ithaca, New York, USA
 
  DC photoguns that employ electrostatic focusing to obtain lower beam emittance must inherently trade off between focusing strength and the field at the photocathode, and are traditionally pushed to the limits of breakdown voltage. In this paper, we numerically investigate a highly parametrized electrostatic geometry exploring the trade-off between the voltage breakdown condition and electrostatic focusing. We then compare the results to DC gun designs where the focusing is introduced via embedded solenoidal fields. Finally, we present investigations for a multi-anode gun design that seeks to simultaneously achieve both high electric field at the photocathode and high gun voltage without violating the empirical voltage breakdown condition. In the most feasible cases, the electrode geometry is optimized via genetic algorithms. Designs on the optimal front are compared with the current performance of the Cornell ERL prototype DC photogun.  
 
WEP254 Simulation of H Beam Chopping in a Solenoid-Based Low-Energy Beam Transport (LEBT) simulation, plasma, ion, electron 1957
 
  • D.T. Abell, D.L. Bruhwiler, Y. Choi, S. Mahalingam, P. Stoltz
    Tech-X, Boulder, Colorado, USA
  • B. Han
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.P. Stockli
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work is supported by the US DOE Office of Science, Office of Basic Energy Sciences, including grant No. DE-SC0000844.
The H- linac for the Spallation Neutron Source (SNS) includes an electrostatic low-energy beam transport (LEBT) subsystem. The ion source group at SNS is developing a solenoid-based LEBT, which will include MHz frequency chopping of the partly-neutralized, 65~keV, 60~mA H- beam. Particle-in-cell (PIC) simulations using the parallel VORPAL framework are being used to explore the possibility of beam instabilities caused by the cloud of neutralizing ions generated from the background gas, or by other dynamical processes that could increase the emittance of the H- beam before it enters the radio-frequency quadrupole (RFQ) accelerator.
 
 
WEP256 Laser-Proton Acceleration as Compact Ion Source proton, laser, simulation, electron 1960
 
  • S. Busold, O. Deppert, K. Harres, G. Hoffmeister, F. Nürnberg, M. Roth
    TU Darmstadt, Darmstadt, Germany
  • A. Almomani, C. Brabetz, M. Droba, O.K. Kester, U. Ratzinger
    IAP, Frankfurt am Main, Germany
  • V. Bagnoud, W.A. Barth, A. Blazevic, O. Boine-Frankenheim, P. Forck, I. Hofmann, A. Orzhekhovskaya, T. Stöhlker, A. Tauschwitz, W. Vinzenz, S.G. Yaramyshev
    GSI, Darmstadt, Germany
  • T.J. Burris-Mog, T.E. Cowan
    HZDR, Dresden, Germany
  • A. Gopal, S. Herzer, O. Jäckel, B. Zielbauer
    HIJ, Jena, Germany
  • T. Herrmannsdoerfer, M. Joost
    FZD, Dresden, Germany
  • M. Kaluza
    IOQ, Jena, Germany
 
  Preparatory work is presented in the context of the upcoming LIGHT project, which is dedicated to build up a test stand for injecting laser accelerated protons into conventional accelerator structures, located at GSI Helmholtzcenter for Heavy Ion Research (Darmstadt, Germany). In an experimental campaign in 2010, a beam of 8.4×109 protons with 170 ps pulse duration and (6.7±0.1) MeV particle energy could be focused with the use of a pulsed high-field solenoid. Collimation and transport of a 300 ps proton bunch containing 3×109 protons with (13.5±0.5) MeV particle energy over a distance of 407 mm was also demonstrated. Parallel simulation studies of the beam transport through the solenoid are in good agreement with the experiment.  
 
WEP264 Laser Ion Source With Long Pulse Width for RHIC-EBIS ion, laser, plasma, ion-source 1972
 
  • K. Kondo, M. Okamura
    BNL, Upton, Long Island, New York, USA
  • T. Kanesue
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka, Japan
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and by the National Aeronautics and Space Administration.
The Electron Beam Ion Source (EBIS) at Brookhaven National Laboratory is a new heavy ion-projector for RHIC and NASA Space Radiation Laboratory. Laser Ion Source (LIS) with solenoid can supply many kinds of ion from solid targets and is suitable for long pulse length with low current as ion provider for RHIC-EBIS. In order to understand a plasma behavior for fringe field of solenoid, we measure current, pulse width and total ion charges by a new ion probe. The experimental result indicates that the solenoid confines the laser ablation plasma transversely.
 
 
WEP268 Changes in LEBT/MEBT at the BNL 200 MeV Linac linac, polarization, rfq, emittance 1978
 
  • D. Raparia, J.G. Alessi, J.M. Fite, O. Gould, V. LoDestro, M. Okamura, J. Ritter, A. Zelenski
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
After reconfiguration of the low energy (35 keV) and the medium energy (750 keV) transport lines in 2009-10, the Brookhaven linac is now delivering the highest intensity beam since it was built in 1970 (~120 μA average current of H to the Brookhaven Linac Isotope Producer). It is also now delivering lower emittance polarized H ion beam for the polarized program at RHIC. To increase the intensity further, we are replacing the buncher in the 750 keV line with one with higher Q value, to allow operation at higher power. Also, to improve polarization, we are replacing the magnetic solenoid before the RFQ in the 35 keV line by a solenoid-einzel lens combination. The paper will report on the results of these changes.
 
 
WEP282 Design of the NSLS-II Linac Front End Test Stand linac, gun, emittance, bunching 2011
 
  • R.P. Fliller, M.P. Johanson, M. Lucas, J. Rose, T.V. Shaftan
    BNL, Upton, Long Island, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The NSLS-II operational parameters place very stringent requirements on the injection system. Among these are the charge per bunch train at low emittance that is required from the linac along with the uniformity of the charge per bunch along the train. The NSLS-II linac is a 200 MeV linac produced by RI Research Instruments GmbH. Part of the strategy for understanding to operation of the injectors is to test the front end of the linac prior to its installation in the facility. The linac front end consists of a 90 keV electron gun, 500 MHz subharmonic prebuncher, focusing solenoids and a suite of diagnostics. The diagnostics in the front end need to be supplemented with an additional suite of diagnostics to fully characterize the beam. In this paper we discuss the design of a test stand to measure the various properties of the beam generated from this section. In particular, the test stand will measure the charge, transverse emittance, energy, energy spread, and bunching performance of the linac front end under all operating conditions of the front end.
 
 
WEP293 Design and Fabrication of the Lithium Beam Ion Injector for NDCX-II ion, ion-source, optics, vacuum 2032
 
  • J.H. Takakuwa, J.-Y. Jung, J.T. Kehl, J.W. Kwan, M. Leitner, P.A. Seidl, W.L. Waldron
    LBNL, Berkeley, California, USA
  • A. Friedman, D.P. Grote, W. M. Sharp
    LLNL, Livermore, California, USA
 
  Funding: This work is performed under the auspices of the U.S. Department of Energy by LBNL under contract DE-AC02-05CH11231.
A 130 keV injector is developed for the NDCX-II facility. It consists of a 10.9 cm diameter lithium doped alumina-silicate ion source heated to ~1300 °C and 3 electrodes. Other components include a segmented Rogowski coil for current and beam position monitoring, a gate valve, pumping ports, a focusing solenoid, a steering coil and space for inspection and maintenance access. Significant design challenges including managing the 3-4 kW of power dissipation from the source heater, temperature uniformity across the emitter surface, quick access for frequent ion source replacement, mechanical alignment with tight tolerance, and structural stabilization of the cantilevered 27” OD graded HV ceramic column. The injector fabrication is scheduled to complete by May 2011, and assembly and installation is scheduled to complete by the beginning of July.
 
 
THOBN2 Muon Collider Final Cooling in 30-50 T Solenoids emittance, acceleration, simulation, induction 2061
 
  • R. B. Palmer, R.C. Fernow
    BNL, Upton, Long Island, New York, USA
  • J.L. Lederman
    UCLA, Los Angeles, California, USA
 
  Muon ionization cooling to the required transverse emittance of 25 microns can be achieved with liquid hydrogen in high field solenoids, provided that the momenta are low enough. At low momenta, the longitudinal emittance rises because of the negative slope of energy loss versus energy. Assuming initial emittances that have been achieved in six dimensional cooling simulations, optimized designs are given using solenoid fields limited to 30, 40, and 50 T. The required final emittances are achieved for the two higher field cases.  
slides icon Slides THOBN2 [0.319 MB]  
 
THOBS3 Magnetic Alignment of Pulsed Solenoids using the Pulsed Wire Method alignment, ion, induction, laser 2087
 
  • D. Arbelaez, J.W. Kwan, T.M. Lipton, A. Madur, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy prepared by LBNL under Contract No. DE-AC02-05CH11231.
A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 μm. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression eXperiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 μm of the induction cell axis has been demonstrated.
 
slides icon Slides THOBS3 [3.246 MB]  
 
THOCS4 RF Power Upgrade for CEBAF at Jefferson Laboratory klystron, controls, cavity, cryomodule 2127
 
  • A.J. Kimber, R.M. Nelson
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Jefferson Laboratory (JLab) is currently upgrading the 6GeV Continuous Electron Beam Accelerator Facility (CEBAF) to 12GeV. As part of the upgrade, RF systems will be added, bringing the total from 340 to 420. Existing RF systems can provide up to 6.5 kW of CW RF at 1497 MHZ. The 80 new systems will provide increased RF power of up to 13 kW CW each. Built around a newly designed and higher efficiency 13 kW klystron developed for JLab by L-3 Communications, each new RF chain is a completely revamped system using hardware different than our present installations. This paper will discuss the main components of the new systems including the 13 kW klystron, waveguide isolator, and HV power supply using switch-mode technology. Methodology for selection of the various components and results of initial testing will also be addressed.
 
slides icon Slides THOCS4 [3.364 MB]  
 
THOCS6 Progress in Cavity and Cryomodule Design for the Project X Linac cryomodule, cavity, linac, lattice 2133
 
  • M.S. Champion, S. Barbanotti, M.H. Foley, C.M. Ginsburg, I.G. Gonin, C.J. Grimm, J.S. Kerby, S. Nagaitsev, T.H. Nicol, T.J. Peterson, L. Ristori, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The continuous wave 3 GeV Project X Linac requires the development of two families of cavities and cryomodules at 325 and 650 MHz. The baseline design calls for three types of superconducting single-spoke resonators at 325 MHz having betas of 0.11, 0.22, and 0.42 and two types of superconducting five-cell elliptical cavities having betas of 0.61 and 0.9. These cavities shall accelerate a 1 mA H beam initially and must support eventual operation at 4 mA. The electromagnetic and mechanical designs of the cavities are in progress and acquisition of prototypes is planned. The heat load to the cryogenic system is up to 25 W per cavity in the 650 MHz section, thus segmentation of the cryogenic system is a major issue in the cryomodule design. Designs for the two families of cryomodules are underway.  
slides icon Slides THOCS6 [2.241 MB]  
 
THP048 Radiation and Thermal Analysis of Production Solenoid for Mu2e Experimental Setup target, neutron, proton, radiation 2208
 
  • V.S. Pronskikh, V. Kashikhin, N.V. Mokhov
    Fermilab, Batavia, USA
 
  The Muon-to-Electron (Mu2e) experiment at Fermilab, will seek the evidence of direct muon to electron conversion that cannot be explained by the Standard Model. An 8 GeV 25 kW proton beam will be directed onto a gold target inside a large-bore superconducting Production Solenoid (PS) with the peak field on the axis of ~5T. The negative muons resulting from the pion decay will be captured in the PS aperture and directed by an S-shaped Transport Solenoid towards the stopping target inside the Detector Solenoid. In order for the superconducting magnets to operate reliably and with a sufficient safety margin, the peak neutron flux entering the coils must be reduced by 3 orders of magnitude that is achieved by means of a sophisticated absorber placed in the magnet aperture. The proposed absorber, consisting of W and Cu parts, is optimized for the performance and cost. Results of MARS15 of energy deposition and radiation analysis are reported. The results of the PS magnet thermal analysis, coordinated with the coil cooling scheme, are reported as well for the selected absorber design.  
 
THP055 Status of the RHIC Head-on Beam-beam Compensation Project electron, proton, gun, cathode 2223
 
  • W. Fischer, M. Anerella, E.N. Beebe, D. Bruno, D.M. Gassner, X. Gu, R.C. Gupta, J. Hock, A.K. Jain, R.F. Lambiase, C. Liu, Y. Luo, M. Mapes, T.A. Miller, C. Montag, B. Oerter, M. Okamura, A.I. Pikin, D. Raparia, Y. Tan, R. Than, P. Thieberger, J.E. Tuozzolo, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
Two electron lenses are under construction for RHIC to partially compensate the head-on beam-beam effect in order to increase both the peak and average luminosity. The final design of the overall system is reported as well as the status of the component design, acquisition, and manufacturing.
 
 
THP071 Interaction Region Design of Super-CT-Factory in Novosibirsk sextupole, quadrupole, interaction-region, factory 2264
 
  • A.V. Bogomyagkov, E.B. Levichev, P.A. Piminov
    BINP SB RAS, Novosibirsk, Russia
 
  The interaction region of the Super-CT-factory is designed to bring stored electron-positron beams into collision with luminosity of 1035 cm-2sec-1. To achieve this a waist collision scheme is implemented, which requires cross-angle collision with high Piwinski angle. The small values of the beta functions at the interaction point and distant final focus lenses are the reasons for high nonlinear chromaticity limiting energy acceptance of the whole ring. The present design allows correction of linear and nonlinear chromaticity of beta functions and of betatron tune advances, correction of second and third order geometrical aberrations from the strong sextupoles pairs, satisfies geometrical constraints, embraces realistic design of final focus quadrupoles and as close as possible positioning of crab sextupole to interaction point.  
 
THP072 Compensation of Detector Solenoid in SUPER-B quadrupole, coupling, dipole, betatron 2267
 
  • Y. Nosochkov, K.J. Bertsche, M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the Department of Energy Contract DE-AC02-76SF00515.
The SUPER-B detector solenoid has a strong 1.5 T field in the Interaction Region (IR) area, and its tails extend over the range of several meters. The main effect of the solenoid field is the coupling of the horizontal and vertical betatron motion which needs to be corrected in order to preserve the small design beam size at the Interaction Point. The additional complications are that: a) due to the crossing angle the solenoid is not parallel to either of the two beams, thus leading to orbit and dispersion perturbations; b) the solenoid overlaps the innermost IR permanent quadrupoles, which will cause additional coupling effects. The proposed correction system provides local compensation of the solenoid effects independently for each side of the IR. It includes “bucking” solenoids to remove the unwanted long solenoid field tails and a set of skew quadrupoles, dipole correctors and anti-solenoids to cancel all linear perturbations to the optics. The details of the correction system design are presented.
 
 
FROAN2 DIANA, a Next Generation Deep Underground Accelerator Facility ion, target, background, optics 2552
 
  • D. Leitner
    NSCL, East Lansing, Michigan, USA
  • M. Couder, M. Wiescher
    Notre Dame University, Notre Dame, Iowa, USA
  • A. Hodgkinson, A. Lemut, J.S. Saba
    LBNL, Berkeley, California, USA
  • M. Leitner
    FRIB, East Lansing, Michigan, USA
 
  Funding: This work was supported by the National Science Foundation NSF-09-500 grant (DUSEL S4), Proposal ID 091728
DIANA (Dakota Ion Accelerators for Nuclear Astrophysics) is a next generation nuclear astrophysics accelerator facility proposed to be built as part of the US DUSEL (Deep Underground Science and Engineering Laboratory) project. The scientific goals of DIANA are focused on experiments related to nucleosynthesis processes. Reaction cross-sections at stellar temperature are extremely low, which makes these experiments challenging. Small signal rates are overwhelmed by large background rates associated with cosmic ray-induced reactions, background from natural radioactivity in the laboratory environment, and the beam-induced background on target impurities. By placing the DIANA facility deep underground (1.4 km) the cosmic ray induced background can be eliminated. In addition, the DIANA accelerator is being designed to achieve large laboratory reaction rates by delivering high ion beam currents (up to 100 mA) to a high density super-sonic jet-gas target (up to 1018 atoms/cm2). Two accelerators are coupled to enable measurements over a wide energy range from 30 keV to 3 MeVin a consistent manner. The accelerators design and its technical challenges are presented.
 
slides icon Slides FROAN2 [4.231 MB]  
 
FROAN3 High-Intensity, High-Brightness Polarized and Unpolarized Beam Production in Charge- Exchange Collisions ion, proton, polarization, brightness 2555
 
  • A. Zelenski, G. Atoian, J. Ritter, D. Steski, V. Zubets
    BNL, Upton, Long Island, New York, USA
  • V.I. Davydenko, A.V. Ivanov, V.V. Kolmogorov
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Basic limitations on the high-intensity H ion beam production were experimentally studied in charge-exchange collisions of the neutral atomic hydrogen beam in the Na- vapor jet ionizer cell. These studies are the part of the polarized source upgrade (to 10 mA peak current and 85% polarization) project for RHIC. In the source the atomic hydrogen beam of a 3-5 keV energy and total (equivalent) current up to 5 A is produced by neutralization of proton beam in pulsed hydrogen gas target. Formation of the proton beam (from the surface of the plasma emitter with a low transverse ion temperature ~0.2 eV) is produced by four-electrode spherical multi-aperture ion-optical system with geometrical focusing. The hydrogen atomic beam intensity up to 1.0 A /cm2 (equivalent) was obtained in the Na-jet ionizer aperture of a 2.0 cm diameter. At the first stage of the experiment H beam with 36 mA current, 5 keV energy and ~1.0 cm-mrad normalized emittance was obtained using the flat grids and magnetic focusing. The experimental results of the high-intensity neutral hydrogen beam generation and studies of the charge-exchange polarization processes of this intense beam will be presented.
 
slides icon Slides FROAN3 [6.093 MB]