Keyword: wakefield
Paper Title Other Keywords Page
MOOCS2 Numerical Verification of the Power Transfer and Wakefield Coupling in the CLIC Two-beam Accelerator simulation, dipole, coupling, damping 51
 
  • A.E. Candel, K. Ko, Z. Li, C.-K. Ng, V. Rawat, G.L. Schussman
    SLAC, Menlo Park, California, USA
  • A. Grudiev, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
 
  The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator concept envisions large complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.  
slides icon Slides MOOCS2 [286.042 MB]  
 
MOP008 Upgrade of the Argonne Wakefield Accelerator Facility (AWA) and Commissioning of a New RF Gun for Drive Beam Generation gun, electron, linac, acceleration 115
 
  • M.E. Conde, D.S. Doran, W. Gai, R. Konecny, W. Liu, J.G. Power, Z.M. Yusof
    ANL, Argonne, USA
  • S.P. Antipov, C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • E.E. Wisniewski
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract No. DE-AC02-06CH11357.
The AWA Facility is presently undergoing several upgrades that will enable it to further study wakefield acceleration driven by high charge electron beams. The facility employs an L-band photocathode RF gun to generate high charge short electron bunches, which are used to drive wakefields in dielectric loaded structures as well as in metallic structures (iris loaded, photonic band gap, etc). Several facility upgrades are underway: (a) a new RF gun with a higher quantum efficiency photocathode will replace the RF gun that has been used to generate the drive bunches; (b) the existing RF gun will be used to generate a witness beam to probe the wakefields; (c) three new L-band RF power stations, each providing 25 MW, will be added to the facility; (d) five linac structures will be added to the drive beamline, bringing the beam energy up from 15 MeV to 75 MeV. The drive beam will consist of bunch trains of up to 32 bunches spaced by 0.77 ns with up to 100 nC per bunch. The goal of future experiments is to reach accelerating gradients of several hundred MV/m and to extract RF pulses with GW power level.
 
 
MOP011 Standing Wakefield Accelerator Based on Periodic Dielectric Structures simulation, electron, radiation, vacuum 124
 
  • X. Wei, G. Andonian, J.B. Rosenzweig, D. Stratakis
    UCLA, Los Angeles, USA
 
  In recent years dielectric wakefield accelerators (DWA) have attracted significant attention for applications in high energy physics and THz radiation sources. However, one needs sufficiently short driving bunches in order to take advantage of the DWA's scaling characteristics to achieve high gradient and high frequency accelerating fields. Since a single large charge Q driving bunch is difficult to be compressed to the needed rms bunch length, a driving bunch train with smaller Q and small emittance, should be used instead for the DWA. In view of this senario, the group velocity of the excited wakefields needs to be decreased to nearly zero, so the electromagnetic energy does not vacate the structure during the bunch train. In this paper we propose a standing wakefield accelerator based on periodic dielectric structures, and address the difference between the proposed structure and the conventional DWA.  
 
MOP016 Preliminary Simulations of Plasma Wakefield Accelerator Experiments at FACET plasma, electron, simulation, emittance 136
 
  • W. An, C. Joshi, W. Lu, W.B. Mori
    UCLA, Los Angeles, California, USA
  • M.J. Hogan
    SLAC, Menlo Park, California, USA
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work is supported by USDoE under DE-FC02-07ER41500, DE-FG02-92ER40727 and NSF under NSF PHY-0904039, PHY-0936266.
Recent experiments on former facility FFTB at SLAC has demonstrated that a single electron beam driven Plasma Wakefield Accelerator (PWFA) can be produced with an accelerating gradient of 52 GeV/m over a meter-long scale*. If another electron bunch is properly loaded into such a wakefield, it will obtain a high energy gain in a short distance as well as a small energy spread. Such PWFA experiment with two bunches will be performed in FACET, which is a new facility at SLAC**. Simulation results show that with possible beam parameters in FACET the first electron bunch (with less current than that in the FFTB experiment) can still produce a meter-long plasma column with a density of 5x1016 cm-3 via field ionization when we use a gas with a lower ionization energy. The second electron bunch can have a 10 GeV energy gain with a very narrow energy spread. If a pre-ionized plasma is used instead of the neutral gas, the energy gain of the second bunch can be enhanced to 30 GeV.
* I. Blumenfeld et al., Nature 445, 741 (2007).
** M. J.Hogan, et al.,NewJ. Phys.12, 055030(2010).
 
 
MOP042 Design of a Superconducting Photonic Band Gap Structure Cell SRF, cavity, HOM, niobium 178
 
  • E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
  • C.H. Boulware, T.L. Grimm
    Niowave, Inc., Lansing, Michigan, USA
 
  Funding: This work is supported by the U.S. Department of Energy (DOE) Office of Science Early Career Research Program.
We present a design of a superconducting photonic band gap (PBG) accelerator cell operating at 700 MHz. It has been long recognized that PBG structures have great potential in reducing long-range wakefields in accelerators. Using PBG structures in superconducting particle accelerators will allow moving forward to significantly higher beam luminosities and lead towards a completely new generation of colliders for high energy physics. We designed the superconducting PBG cell which incorporates higher order mode (HOM) couplers to conduct the HOMs filtered by the PBG structure out of the cryostat. The accelerator characteristics of the cell were evaluated numerically. A scaled prototype cell was fabricated out of copper at the higher frequency of 2.8 GHz and cold-tested. The 700 MHz niobium cell will be fabricated at Niowave, Inc. and tested for high gradient at Los Alamos in the near future.
 
 
MOP057 A SLAB Dielectric Structure as a Source of Wakefield Acceleration and THz Cherenkov Radiation Generation radiation, acceleration, simulation, electron 211
 
  • D. Stratakis, G. Andonian, J.B. Rosenzweig, X. Wei
    UCLA, Los Angeles, California, USA
 
  Funding: Work is funded by US Dept. of Energy grant numbers DE-FG03-92ER40693.
Acceleration of electrons in wakefields set up by a series of drive bunches in a dielectric structure has been proposed as a possible component of next-generation accelerators. Here, we discuss future experimental work with a slab sub-millimeter dielectric loaded accelerator structure that in contrast to conventional dielectric tubes should diminish the effects of transverse wakes and will permit higher total charge to be accelerated. The proposed experiment will allow the generation of unprecedented peak power at THz frequencies. In addition, it can generate ~50-150 MV/m drive fields and thus will allow the testing of acceleration using witness and drive beams. We examine details of the geometry and composition of the structures to be used in the experiment.
 
 
MOP088 A High Transformer Ratio Plasma Wakefield Accelerator Scheme for FACET plasma, optics, simulation, electron 265
 
  • R.J. England, J.T. Frederico, M.J. Hogan
    SLAC, Menlo Park, California, USA
  • W. An, C. Joshi, W. Lu, W.B. Mori
    UCLA, Los Angeles, California, USA
  • P. Muggli
    USC, Los Angeles, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515
The ideal drive beam current profile for the plasma wakefield accelerator (PWFA) has been predicted by 1D and 2D simulations to be characterized by a triangular ramp that rises linearly from head to tail, followed by a sharp drop. A technique for generating such bunches experimentally was recently demonstrated. We present here an adaptation of this scheme to generate ramped bunches using the 23 GeV electron beam produced in the first two-thirds of the SLAC linac, and discuss plans to implement this scheme for high transformer ratio demonstration experiments at the FACET plasma wakefield accelerator facility.
 
 
MOP090 Optics Tuning Knobs for FACET quadrupole, plasma, optics, focusing 268
 
  • Y. Nosochkov, M.J. Hogan, W. Wittmer
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the Department of Energy Contract DE-AC02-76SF00515.
FACET is a new facility under construction at the SLAC National Accelerator Laboratory. The FACET beam line is designed to provide 23 GeV tightly focused and compressed electron and positron bunches for beam driven plasma wakefield acceleration research and other experiments. Achieving optimal beam parameters for various experimental conditions requires the optics capability for tuning in a sufficiently wide range. This will be achieved by using optics tuning systems (knobs). Design of such systems for FACET is discussed.
 
 
MOP106 Electron Acceleration via Positron Driven Plasma Wakefield Accelerator electron, positron, plasma, proton 295
 
  • S.F. Pinkerton, P. Muggli
    USC, Los Angeles, California, USA
  • W. An, W.B. Mori
    UCLA, Los Angeles, California, USA
 
  Funding: Work supported by US DoE and NSF.
We show that a positron bunch with parameters accessible at FACET can excite a stable plasma wakefield over a few meters and a witness electron bunch experiences an accelerating gradient on the order of 10 GeV/m. Initial simulations show that the positron drive bunch is strongly affected by the transverse components of the wakefield: the positron bunch evolves significantly, which affects both the wakefield and witness bunch dynamics. Various solutions are presented, of which the positron-electron train shceme generates a desirable wakefield.
 
 
MOP107 Status of Dielectric-Lined Two-Channel Rectangular High Transformer Ratio Accelerator Structure Experiment acceleration, electron, controls, status 298
 
  • S.V. Shchelkunov, M.A. LaPointe
    Yale University, Beam Physics Laboratory, New Haven, Connecticut, USA
  • M.E. Conde, W. Gai, J.G. Power, Z.M. Yusof
    ANL, Argonne, USA
  • J.L. Hirshfield
    Omega-P, Inc., New Haven, Connecticut, USA
  • T.C. Marshall
    Columbia University, New York, USA
  • D. Mihalcea
    Northern Illinois University, DeKalb, Illinois, USA
  • G.V. Sotnikov
    NSC/KIPT, Kharkov, Ukraine
 
  Funding: This work is supported by DoE, Office of High Energy Physics
Recent tests of a two-channel rectangular dielectric lined accelerator structure are described; comparison with theory and related issues are presented. The structure (with channel width ratio 6:1) is designed to have a maximum transformer ratio of ~12.5:1. It operates mainly in the LSM31 mode (~ 30GHz). The dielectric liner is cordierite (dielectric constant ~4.76). The acceleration gradient is 1.2 MV/m for each 10nC of the drive bunch for the first acceleration peak of the wakefield, and 0.92 MV/m for the second peak. The structure is installed into the AWA beam-line (Argonne National Lab) and is excited by a single 10-50nC, 14MeV drive bunch. Both the drive bunch and a delayed witness bunch are produced at the same photocathode. This is the first experiment to test a two-channel dielectric rectangular wakefield device where the accelerated bunch may be continuously energized by the drive bunch. The immediate experimental objective is to observe the energy gain and spread, and thereby draw conclusions from the experimental results and the theory model predictions. The observed energy change of the test bunch might be well explained*.
* G. V. Sotnikov, et al., Advanced Accelerator Concepts: 13th Workshop, Carl B. Schroeder, Wim Leemans and Eric Esarey, editors, AIP Conf. Proc. 1086), pp. 415–420 (AIP, New York, 2009).
 
 
MOP108 Simulation Study of Proton-Driven PWFA Based on CERN SPS Beam plasma, proton, simulation, acceleration 301
 
  • G.X. Xia, A. Caldwell
    MPI-P, München, Germany
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • W.B. Mori
    UCLA, Los Angeles, California, USA
 
  We have proposed an experimental study of the proton-driven plasma wakefield acceleration by using proton beam from the CERN SPS. In this paper, the particle-in-cell (PIC) simulation of the SPS beam-driven plasma wakefield acceleration is introduced. By varying the beam parameters and plasma parameters, simulation shows that electric fields in excess of 1 GeV/m can be achieved.  
 
MOP112 Study of Enhanced Transformer Ratio in a Coaxial Dielectric Wakefield Accelerator using a Profiled Drive Bunch Train simulation, accelerating-gradient, acceleration, collider 304
 
  • G.V. Sotnikov
    NSC/KIPT, Kharkov, Ukraine
  • J.L. Hirshfield
    Yale University, Physics Department, New Haven, CT, USA
  • T.C. Marshall, G.V. Sotnikov
    Omega-P, Inc., New Haven, Connecticut, USA
 
  Funding: The research was supported by US Department of Energy, Office of High Energy Physics, Advanced Accelerator R & D.
A key parameter of wakefield acceleration is the transformer ratio T. For a dielectric wakefield accelerator, it has been suggested to use a ramped drive bunch train (RBT), or a multizone dielectric structure to enhance T. Here we show the possibility of greatly improving the RBT technique by the use of a numerical algorithm. We study a two-channel 28 GHz structure with two nested Alumina cylindrical shells (CDWA) which is to be excited by a train of four annular bunches having energy 14 MeV and axial RMS size 1mm; the total charge of bunches is 200 nC. For bunch charge and spacing chosen for optimum acceleration gradient, or for optimizing T using the standard method, we obtain T~3.6. We found that if the charge ratios are 1.0:2.4:3.5:5.0 and the spaces between the bunches are 2.5, 2.5, and 4.5 wakefield periods, then T~17. The RBT also can be used successfully in a high gradient THz CDWA structure.
* C.Jing et.al., Phys. Rev. Lett. 98 144801, (2007)
** C. Wang, et.al. Proc. PAC 2005. IEEE, 2005, p.1333.
*** G. Sotnikov et.al. PRST-AB, 061302 (2009).
 
 
MOP113 High Quality Electron Beams Generated in a Laser Wakefield Accelerator electron, laser, plasma, emittance 307
 
  • W.A. Gillespie
    University of Dundee, Nethergate, Dundee, Scotland, United Kingdom
  • M.P. Anania, C. Aniculaesei, E. Brunetti, S. Cipiccia, B. Ersfeld, M.R. Islam, R.C. Issac, D.A. Jaroszynski, G.G. Manahan, R.P. Shanks, G.H. Welsh, S.M. Wiggins
    USTRAT/SUPA, Glasgow, United Kingdom
  • S.P. Jamison
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • A. MacLeod
    UAD, Dundee, United Kingdom
 
  Funding: The U.K. EPSRC, the EC's Seventh Framework Programme (LASERLAB-EUROPE / LAPTECH, grant agreement no. 228334) and the Extreme Light Infrastructure (ELI) project.
The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme is developing laser-plasma accelerators for the production of ultra-short electron beams as drivers of incoherent and coherent radiation sources from plasma and magnetic undulators. Here we report on the latest laser wakefield accelerator experiments on the University of Strathclyde ALPHA-X accelerator beam line looking at narrow energy spread electron beams. ALPHA-X uses a 26 TW Ti:sapphire laser (energy 900 mJ, duration 35 fs) focused into a helium gas jet (nozzle length 2 mm) to generate high quality monoenergetic electron beams with central energy in the range 80-180 MeV. The beam is fully characterised in terms of the charge, transverse emittance, energy spread and bunch length. In particular, the energy spectrum (with less than 1% measured energy spread) is obtained using a high resolution magnetic dipole imaging spectrometer.
 
 
MOP116 Development of an X-Band Dielectric-Based Wakefield Power Extractor for Potential CLIC Applications simulation, insertion, impedance, electron 313
 
  • C.-J. Jing, S.P. Antipov, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.E. Conde, W. Gai, J.G. Power
    ANL, Argonne, USA
  • I. Syratchev
    CERN, Geneva, Switzerland
 
  Funding: Work is funded by DoE SBIR PhaseI.
In the past decade, tremendous efforts have been put into the development of the CLIC Power Extraction and Transfer Structure (PETS), and significant progress has been made. However, one concern remains the manufacturing cost of the PETS, particularly considering the quantities needed for a TeV machine. A dielectric-based wakefield power extractor in principle is much cheaper to build. A low surface electric field to gradient ratio is another big advantage of the dielectric-loaded accelerating/decelerating structure. We are currently investigating the possibility of using a cost-effective dielectric-based wakefield power extractor as an alternative to the CLIC PETS. We designed a 12 GHz dielectric-based power extractor which has a similar performance to CLIC PETS with parameters 23 mm beam channel, 240 ns pulse duration, 135 MW output per structure using the CLIC drive beam. In order to study potential rf breakdown issues, as a first step we are building a 11.424 GHz dielectric-based power extractor scaled from the 12 GHz version, and plan to perform a high power rf test using the SLAC 11.424 GHz high power rf source.
 
 
MOP117 Beam Test of a Tunable Dielectric Wakefield Accelerator gun, acceleration, electron, linac 316
 
  • C.-J. Jing, S.P. Antipov, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.E. Conde, W. Gai, J.G. Power
    ANL, Argonne, USA
 
  Funding: Work supported by US DoE SBIR Grant under Contract # DE-FG02-07ER84822
We report on a collinear wakefield experiment using the first tunable dielectric loaded accelerating structure. Dielectric-based accelerators are generally lacking in approaches to tune the frequency after fabrication. However, by introducing an extra layer of nonlinear ferroelectric which has a dielectric constant sensitive to temperature and DC voltage, the frequency of a DLA structure can be tuned on the fly by controlling the temperature or DC bias. The experiment demonstrated that by varying the temperature of the structure over a 50°C temperature range, the energy of a witness bunch at a fixed delay with respect to the drive beam could be changed by an amount corresponding to more than half of the nominal structure wavelength.
 
 
MOP119 The Dielectric Wakefield Accelerating Structure plasma, simulation, electron, controls 319
 
  • A. Kanareykin, S.P. Antipov, J.B. Butler, C.-J. Jing, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • W. Gai
    ANL, Argonne, USA
 
  Funding: US Department of Energy
We report here on the development of THz diamond wakefield structures produced using Chemical Vapor Deposition (CVD) technology*. The diamond structures would be used in a THz generation experiment at the new FACET facility at SLAC. We consider a dielectric based accelerating structure to study of the physical limitations encountered driving >GV/m wakefields in the cylindrical and planar geometries of a dielectric wakefield accelerator (DWA). In a DWA, an ultrashort drive bunch traverses the evacuated central region of the structure, creating Cherenkov wakefields in the dielectric to accelerate a witness bunch. A diamond-based DWA structure will allow a sustained accelerating gradient exceeding breakdown threshold demonstrated with the FFTB experiments**. The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric rf structures: high breakdown voltage, extremely low dielectric losses and the highest thermoconductive coefficient available for removing waste heat from the device.
*R. J. Barker et al., Modern Microwave and Millimeter-Wave Power Electronics, IEEE Press/Wiley-Interscience, Piscataway NJ 2005, Chapter 7
**M.C. Thompson et al. Phys. Rev.Lett.100:214801, 2008.
 
 
MOP132 Wakefield Generation in Compact Rectangular Dielectric-Loaded Structures Using Flat Beams simulation, electron, focusing, emittance 340
 
  • D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • B.M. Cowan, P. Stoltz
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-10-1-0051, to Northern Illinois University
Wakefields with amplitude in the 10's MV/m range can be routinely generated by passing electron beams through dielectric-loaded structures. The main obstacle in obtaining high field amplitude (in the GV/m range) is the ability to focus the high-peak-current electron beam in the transverse plane to micron level, and to maintain the focusing all the way along the dielectric structure. In this paper we explore the use of a flat, high-peak current, electron beams to be produced at the Fermilab's NML facility to drive dielectric loaded structures. Based on beam dynamics simulation we anticipate that we can obtain flat beams with very small vertical size (under 100 microns) and peak current is in excess of 1 kA. We present simulations of the wakefield generation based on theoretical models and PIC simulations with VORPAL.
 
 
MOP152 G4beamline Particle Tracking in Matter Dominated Beam Lines simulation, space-charge, collider, electron 373
 
  • T.J. Roberts, K.B. Beard
    Muons, Inc, Batavia, USA
  • S. Ahmed
    JLAB, Newport News, Virginia, USA
  • D. Huang, D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: Supported in part by USDOE STTR Grant DE-FG02-06ER86281
The G4beamline program is a useful and steadily improving tool to quickly and easily model beam lines and experimental equipment without user programming. It has both graphical and command-line user interfaces. Unlike most accelerator physics codes, it easily handles a wide range of materials and fields, being particularly well suited for the study of muon and neutrino facilities. As it is based on the Geant4 toolkit, G4beamline includes most of what is known about the interactions of particles with matter. We are continuing the development of G4beamline to facilitate its use by a larger set of beam line and accelerator developers. A major new feature is the calculation of space-charge effects. G4beamline is open source and freely available.
 
 
MOP158 Numerical Study of Plasma Wakefields Excited by a Train of Electron Bunches plasma, simulation, electron, emittance 391
 
  • Y. Fang, P. Muggli
    USC, Los Angeles, California, USA
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • W.B. Mori
    UCLA, Los Angeles, California, USA
 
  Funding: Work supported by the US department of Energy
We study numerically the excitation of plasma wakefields by a train of electron bunches using the UCLA particle-in-cell code Quickpic*. We aim to find an optimal regime that combines both the advantages of linear and non-linear plasma wakefield accelerator. On one hand, the longitudinal electric field excited by individual bunches add as in the linear region, and the transformer ratio can be maximized (i.e. much larger than 2) by adjusting the number of particles in the bunches as well as their distance. On the other hand, the bunches create large wakefield independent of transverse sizes evolution while propagating through the plasma as in the non-linear region. In principle, such a scheme can multiply the energy of the witness bunch following the drive bunch train in a single plasma wakefield accelerating stage. The parameters for electron bunches are chosen based on the current experiment at the Brookhaven National Laboratory Accelerator Test Facility (ATF), where this scheme can be tested. Detailed simulation results will be presented.
* C. Huang, J. Comp. Phys.
 
 
MOP242 Evaluation of Temporal Diagnostic Techniques for Two-bunch FACET Beam laser, plasma, cavity, diagnostics 568
 
  • M.D. Litos, M.R. Bionta, V.A. Dolgashev, R.J. England, D. Fritz, A. Gilevich, P. Hering, M.J. Hogan
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515
Three temporal diagnostic techniques are considered for use in the FACET facility at SLAC, which will incorporate a unique two-bunch beam for plasma wakefield acceleration experiments. The results of these experiments will depend strongly on the the inter-bunch spacing as well as the longitudinal profiles of the two bunches. A reliable, single-shot, high resolution measurement of the beam’s temporal profile is necessary to fully quantify the physical mechanisms underlying the beam driven plasma wakefield acceleration. In this study we show that a transverse deflecting cavity is the diagnostic which best meets our criteria.
 
 
TUOBN3 Witness Bunch Acceleration in a Multi-bunch PWFA plasma, acceleration, electron, controls 712
 
  • P. Muggli, B.A. Allen, Y. Fang
    USC, Los Angeles, California, USA
  • M. Babzien, M.G. Fedurin, K. Kusche, R. Malone, C. Swinson, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by US DoE and NSF
We present initial experimental results showing the excitation of plasma wakefields by a train of two drive bunches. These wakefields are experienced by a trailing witness bunch that gains energy while retaining a finite energy spread. These well controlled plasma wakefield accelerator (PWFA) experiments are important to test the theory of the PWFA and serve as a testbed for techniques that will be used in high energy experiments.
 
slides icon Slides TUOBN3 [5.432 MB]  
 
TUOBN4 Plasma Wakefield Experiments at FACET plasma, electron, positron, acceleration 715
 
  • M.J. Hogan, R.J. England, J.T. Frederico, C. Hast, S.Z. Li, M.D. Litos, D.R. Walz
    SLAC, Menlo Park, California, USA
  • W. An, C.E. Clayton, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, S. Tochitsky
    UCLA, Los Angeles, California, USA
  • P. Muggli, S.F. Pinkerton, Y. Shi
    USC, Los Angeles, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration beginning in summer 2011. The nominal FACET parameters are 23GeV, 3nC electron bunches compressed to ~20μm long and focused to ~10μm wide. The intense fields of the FACET bunches will be used to field ionize neutral lithium or cesium vapor produced in a heat pipe oven. Previous experiments at SLAC demonstrated 50GeV/m gradients in an 85cm field ionized lithium plasma where the interaction distance was limited by head erosion. Simulations indicate the lower ionization potential of cesium will decrease the rate of head erosion and increase single stage performance. The initial experimental program will compare the performance of lithium and cesium plasma sources with single and double bunches. Later experiments will investigate improved performance with a pre-ionized cesium plasma. The status of the experiments and expected performance are reviewed.
 
slides icon Slides TUOBN4 [13.080 MB]  
 
TUOBN5 A Proposed Experimental Test of Proton-Driven Plasma Wakefield Acceleration Based on CERN SPS plasma, electron, proton, acceleration 718
 
  • G.X. Xia, A. Caldwell
    MPI-P, München, Germany
  • W. An, C. Joshi, W. Lu, W.B. Mori
    UCLA, Los Angeles, California, USA
  • R.W. Assmann, F. Zimmermann
    CERN, Geneva, Switzerland
  • R.A. Fonseca, N.C. Lopes, J. Vieira
    Instituto Superior Tecnico, Lisbon, Portugal
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • K.V. Lotov
    BINP SB RAS, Novosibirsk, Russia
  • P. Muggli
    USC, Los Angeles, California, USA
  • A.M. Pukhov
    HHUD, Dusseldorf, Germany
  • L.O. Silva
    IPFN, Lisbon, Portugal
 
  Proton-driven plasma wakefield acceleration (PDPWA) has been proposed as an approach to accelerate electron beam to TeV energy regime in a single passage of plasma channel. An experimental test is recently proposed to demonstrate the capability of PDPWA by using proton beams from the CERN SPS. The preparation of experiment is introduced. The particle-in-cell simulation results based on realistic beam parameters are presented.  
slides icon Slides TUOBN5 [2.208 MB]  
 
TUP105 Fabrication of a Model Polyhedral Superconducting Cavity cavity, HOM, dipole, alignment 1035
 
  • N. Pogue, P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, Texas, USA
 
  Funding: This work was supported in part by the U.S. Department of Energy under Grant DE-FG02-06ER41405
The polyhedral cavity is a superconducting cavity structure in which a multi-cell cavity is built from a Roman-arch assembly of arc segments. Each segment has a Tesla-like r-z profile, and is fabricated either by bonding a Nb foil to a Cu substrate wedge or by depositing a Nb surface on the Cu substrate. The segments are assembled with an arrangement of locking rings and alignment pins, with a controlled narrow gap between segments over much of the arc-span of adjoining segments. A tubular channel is machined in the mating surfaces of the Cu wedges. Dipole modes are suppressed by locating along each channel a tube coated with rf-terminating ferrite. A first model of the cavity is being built to investigate mode structure, evaluate alternatives for the Nb surface fabrication, and develop assembly procedures.
 
 
WEP042 FACET Emittance Growth emittance, simulation, plasma, acceleration 1573
 
  • J.T. Frederico, M.J. Hogan, M.D. Litos, Y. Nosochkov, T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration. The FACET beamline consists of a chicane and final focus system to compress the 23 GeV, 3 nC electron bunches to ~20μm long and ~10μm wide. Simulations of the FACET beamline indicate the short-duration and large, 1.5% rms energy spread beams may suffer a factor of four emittance growth from a combination of chromaticity, incoherent synchrotron radiation (ISR), and coherent synchrotron radiation (CSR). Emittance growth is directly correlated to head erosion in plasma wakefield acceleration and is a limiting factor in single stage performance. Studies of the geometric, CSR, and ISR components are presented. Numerical calculation of the rms emittance can be overwhelmed by long tails in the simulated phase space distributions; more useful definitions of emittance are given. A complete simulation of the beamline is presented as well, which agrees with design specifications.
 
 
WEP100 Energy Spread Compensation for Multi-Bunch Linac Operation Mode electron, linac, cavity, simulation 1662
 
  • D. Mihalcea
    Northern Illinois University, DeKalb, Illinois, USA
  • W. Gai, J.G. Power
    ANL, Argonne, USA
 
  Funding: This work was supported under the U.S. Department of Energy contract number: DE-AC02-06CH11357 with Argonne National Laboratory.
Higher wakefield gradients can be achieved by increasing the total beam charge which is passed through a dielectric-loaded structure and by reducing the transverse size of the beam. Currently, the Argonne AWA photoinjector operates with electron bunches of up to 100 nC and the goal is to raise the total beam charge to about 1000 nC and to improve the beam focusing to a few 100's microns transverse spot size. The increase of the beam charge can be done by superimposing electron bunches that fill up several consecutive RF buckets. Although the energy stored in a single 7-cell linac is by design large the multi-bunch operation with short bunch trains (~10 ns) is still plagued by large energy spread due to significant beam loading effects. In this paper we present a technique intended to reduce the energy spread for a high charge bunch train by properly choosing the time delay between consecutive bunches. The simulations show that the energy spread can be lowered to about 2.8% from about 6.0% for a 10-bunch train of total charge 1000 nC and kinetic energy of about 70 MeV.
 
 
WEP107 CSR Shielding Experiment shielding, dipole, linac, electron 1677
 
  • V. Yakimenko, A.V. Fedotov, M.G. Fedurin, D. Kayran
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • P. Muggli
    USC, Los Angeles, California, USA
 
  It is well known that the emission of coherent synchrotron radiation (CSR) in a dipole magnets leads to increase in beam energy spread and emittance. At the Brookhaven National Laboratory Accelerator Test Facility (ATF) we study the suppression of CSR emission affect on electron beam in a dipole magnet by two vertically spaced conducting plates. The gap between the plates is controlled by four actuators and could be varied from 0 to 14 mm. Our experimental results show that closing the plates significantly reduces both the beam energy loss and CSR-induced beam energy spread. In this paper we present selected results of the experiment and compare then with rigorous analytical theory.  
 
WEP111 Beam Breakup in Dielectric Wakefield Accelerating Structures: Modeling and Experiments simulation, solenoid, controls, focusing 1689
 
  • P. Schoessow, C.-J. Jing, A. Kanareykin, A.L. Kustov
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • A. Altmark
    LETI, Saint-Petersburg, Russia
  • W. Gai, J.G. Power
    ANL, Argonne, USA
 
  Funding: Work supported by USDOE SBIR program.
Beam breakup (BBU) effects resulting from parasitic wakefields limit considerably the intensity of the drive beam that can be transported through a dielectric accelerating structure and hence the accelerating field that can be achieved. We have been developing techniques to control BBU effects using a quadrupole channel or solenoid surrounding the wakefield device. We report here on the status of simulations and experiments on BBU and its mitigation, emphasizing an experiment at the Argonne Wakefield Accelerator facility using a 26 GHz dielectric wakefield device fitted with a solenoid to control BBU. We present calculations based on a particle-Green’s function beam dynamics code (BBU-3000) that we are developing. The code allows rapid, efficient simulation of BBU effects in advanced linear accelerators.
 
 
WEP137 Performance Analysis on the IBM Blue Gene/P for Wakefield Calculations simulation, cavity, plasma, electron 1737
 
  • M. Min, P.F. Fischer
    ANL, Argonne, USA
 
  Accurate and efficient simulations will significantly reduce the cost and the risk in the design process for various applications in accelerator design. We improved capability of the Argonne-developed high-fidelity wakefield simulation code, NekCEM, by upgrading pre-setup and communication subroutines for high-performance simulations beyond petascale. We present a detailed study of parallel performance of NekCEM on the IBM Blue Gene/P at Argonne. We demonstrate strong scaling up to P=131,072 cores using up to more than 1.1 billion grid points with the total number of elements up to E=273,000 and N=15 which gives 75% efficiency at 8,530 grid points per core compared to the base case of P =16,384 cores.  
 
WEP147 The Effect of Space-charge and Wake Fields in the Fermilab Booster impedance, booster, coupling, simulation 1758
 
  • A. Macridin, J.F. Amundson, P. Spentzouris
    Fermilab, Batavia, USA
  • D.O. McCarron
    IIT, Chicago, Illinois, USA
  • L.K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: This work was supported by the DOE contracts DE-AC02-07CH11359, DE-AC02-05CH11231 and DE-AC02-06CH11357 and the ComPASS project funded through the SciDAC.
We calculate the impedance and the wake functions for laminated structures with parallel-planes and circular geometries. We critically examine the approximations used in the literature for the coupling impedance in laminated chambers and find that most of them are not justified because the wall surface impedance is large. A comparison between the flat and the circular geometry impedance is presented. We use the wake fields calculated for the Fermilab Booster laminated magnets in realistic beam simulations using the Synergia code. We find good agreement between our calculation of the coherent tune shift at injection energy and the experimental measurements.
 
 
WEP179 Calculating Point-Charge Wakefields from Finite Length Bunch Wake-Potentials cavity, impedance, vacuum 1825
 
  • B. Podobedov
    BNL, Upton, Long Island, New York, USA
  • G.V. Stupakov
    SLAC, Menlo Park, California, USA
 
  Starting from analytical properties of high frequency geometric impedance we show how one can accurately calculate short bunch wake-potentials (and even point-charge wakefields) from time domain calculations performed with a much longer bunch. In many practical instances this drastically reduces the need for computer resources, speeds up the calculations, and improves their accuracy. To illustrate this method we give examples for 2D accelerator structures of various complexities.  
 
WEP186 Wake Potentials in the ILC Interaction Region cavity, interaction-region, HOM, vacuum 1837
 
  • A. Novokhatski
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515.
The vacuum chamber of the ILC Interaction Region (IR) is optimized for best detector performance. It has special shaping to minimize additional backgrounds due to the metal part of the chamber. Also, for the same reason this thin vacuum chamber does not have water cooling. Therefore, small amounts of power, which may be deposited in the chamber, can be enough to raise the chamber to a high temperature. One of the sources of “heating” power is the electromagnetic field of the beam. This field diffracts by non-regularities of the beam pipe and excites free-propagating fields, which are then absorbed by the pipe wall. In addition we have a heating power of the image currents due to finite conductivity of the metallic wall. We will discuss these effects as updating the previous results.
 
 
THOBN4 Experiment to Demonstrate Acceleration in Optical Photonic Bandgap Structures laser, simulation, electron, acceleration 2067
 
  • R.J. England, E.R. Colby, R. Laouar, C. McGuinness, D. Mendez, C.-K. Ng, J.S.T. Ng, R.J. Noble, K. Soong, J.E. Spencer, D.R. Walz, Z. Wu, D. Xu
    SLAC, Menlo Park, California, USA
  • E.A. Peralta
    Stanford University, Stanford, California, USA
 
  Funding: This work was funded by Department of Energy Grants DE-AC02-76SF00515, DE-FG06-97ER41276.
Optical scale dielectric structures offer a promising medium for high-gradient, compact, low-cost acceleration of charged particles. An experimental program is underway at the SLAC E163 facility to demonstrate acceleration in photonic bandgap structures driven by short laser pulses. We present initial experimental results, discuss structure and experimental design, and present first estimates of achievable gradient.
 
slides icon Slides THOBN4 [5.925 MB]  
 
THOBN5 Design and Testing of Advanced Photonic Bandgap (PBG) Accelerator Structures klystron, diagnostics, coupling, ion 2071
 
  • B.J. Munroe, M.A. Shapiro, R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
  • V.A. Dolgashev, S.G. Tantawi, A.D. Yeremian
    SLAC, Menlo Park, California, USA
  • R.A. Marsh
    LLNL, Livermore, California, USA
 
  Photonic Band-gap (PBG) structures continue to be an area of promising research for high gradient accelerators with wakefield suppression. Experimental results on an 11.4 GHz PBG structure tested at high power and high repetition rate at SLAC have shown that high gradients can be achieved in these structures. For PBG structures with thin rods, however, pulsed heating of the inner row of rods is a problem. Following these preliminary results, two new PBG structures have been designed. One structure, designated 1C-SW-A5.65-T4.6-Cu-PBG2-SLAC1, utilizes elliptical inner rods to reduce pulsed heating to an acceptable level; it will be tested at SLAC. A second PBG structure with round rods will be tested at 17.1 GHz at MIT. The MIT research will use the improved diagnostic access of the PBG structure to obtain a better understanding of the breakdown process. We will present preliminary results for the design and testing of these PBG structures.  
slides icon Slides THOBN5 [0.752 MB]  
 
THOBN6 Wakefield Breakdown Test of a Diamond-Loaded Accelerating Structure vacuum, simulation, laser, acceleration 2074
 
  • S.P. Antipov, C.-J. Jing, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.E. Conde, D.S. Doran, W. Gai, J.G. Power, Z.M. Yusof
    ANL, Argonne, USA
 
  Funding: DOE SBIR
Diamond has been proposed as a dielectric material for dielectric loaded accelerating (DLA) structures. It has a very low microwave loss tangent, the highest available thermoconductive coefficient and high RF breakdown field. In this paper we report the results from a wakefield breakdown test of diamond-loaded rectangular accelerating structure and development of a cylindrical diamond DLA. We expect to achieve field levels on the order of 100 MV/m in the structure using the 100nC beam at the Argonne Wakefield Accelerator Facility. Single crystal diamond plates produced by chemical vapor deposition (CVD) are used in the structure. The structure is designed to yield up to 0.5 GV/m fields on the diamond surface to test it for breakdown. A surface analysis of the diamond is performed before and after the beam test.
 
slides icon Slides THOBN6 [1.629 MB]  
 
THP078 Study of a TeV Level Linear Collider Using Short rf Pulse (~20ns) Two Beam Accelerator Concept collider, linear-collider, linac, klystron 2279
 
  • C.-J. Jing, S.P. Antipov, A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • M.E. Conde, W. Gai, J.G. Power
    ANL, Argonne, USA
 
  Funding: Work is supported by DOE SBIR grant under contract No. DE-SC0004320.
In a general sense, a high gradient is desirable for a TeV level linear collider design because it can reduce the total linac length. More importantly, the efficiency and the cost to sustain such a gradient should be considered as well in the optimization process of an overall design. We propose a high energy linear collider based on a short rf pulse (~22ns flat top), high gradient (~267MV/m loaded gradient), high frequency (26GHz) dielectric two beam accelerator scheme. This scheme is a modular design and its unique locally repetitive drive beam structure allows a flexible configuration to meet different needs. Major parameters of a conceptual 3-TeV linear collider are presented. This preliminary study shows an efficient (~7% overall ) short pulse collider may be achievable. As the first step, a dielectric based broadband accelerating structure is under development.
 
 
THP083 Fabrication and Design of the Main Linacs for CLIC with Damped and Detuned Wakefield Suppression and Optimised Surface Electromagnetic Fields dipole, linac, HOM, damping 2291
 
  • R.M. Jones, A. D'Elia, V.F. Khan
    UMAN, Manchester, United Kingdom
  • A. Grudiev, G. Riddone, W. Wuensch
    CERN, Geneva, Switzerland
 
  Funding: Research leading to these results has received funding from the European commission under the FP7 research infrastructure grant no. 227579.
We report on the suppression of long-range wakefields in the main linacs of the CLIC collider. This structure operates with a 120 degree phase advance per cell. The wakefield is damped using a combination of detuning the frequencies of beam-excited higher order modes and by light damping, through slot-coupled manifolds. This serves as an alternative to the present baseline CLIC design which relies on heavy damping. Detailed simulations of both the optimised surface fields resulting from the monopole mode, and from wakefield damping of the dipole modes, are discussed. We report on fabrication details of a structure consisting of 24 cells, diffusion bonded together. This design, known as CLICDDSA, takes into practical mechanical engineering issues and is the result of several optimisations since the earlier CLICDDS designs. This structure is due to be tested for its capacity to sustain high gradients at CERN.
 
 
THP107 Source of Microbunching at BNL NSLS Source Development Laboratory laser, linac, electron, FEL 2324
 
  • S. Seletskiy, Y. Hidaka, J.B. Murphy, B. Podobedov, H.J. Qian, Y. Shen, X.J. Wang, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  We report experimental studies of the origins of electron beam microbunching instability at BNL Source Development Laboratory (SDL). We eliminated laser-induced microbunching by utilizing an ultra-short photocathode laser. The measurements of the resulting electron beam led us to conclude that, at SDL, microbunching arising from shot noise is not amplified to any significant level. Our results demonstrated that the only source of microbunching instability at SDL is the longitudinal modulation of the photocathode laser pulse. Our work shows that assuring a longitudinally smoothed photocathode laser pulse allows mitigating microbunching instability at a typical FEL injector with a moderate microbunching gain.  
 
THP109 Dielectric Collimators for Linear Collider Beam Delivery System collimation, impedance, collider, linear-collider 2330
 
  • A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • S. Baturin
    LETI, Saint-Petersburg, Russia
  • R. Tomás
    CERN, Geneva, Switzerland
 
  Funding: US Department of Energy
The current status of ILC and CLIC concepts require additional research on wakefield reduction in the collimator sections. New materials and new geometries have been considered recently*. Dielectric collimators for the CLIC Beam Delivery System have been discussed with a view to minimize the BDS collimation wakefields**. Dielectric collimator concepts for the linear collider are presented in this paper; cylindrical and planar collimators for the CLIC parameters have been considered, and simulations to minimize the beam impedance have been performed. The prototype collimator system is planned to be fabricated and experimentally tested at Facilities for Accelerator Science and Experimental Test Beams (FACET) at SLAC.
*J.R.Lopez. ILC-CLIC Beam Dynamics Workshop. CERN, Geneva, 23-25 June, 2009.
**R. Tomas. ILC-CLIC Beam Dynamics Workshop. CERN, Geneva, 23-25 June, 2009.
 
 
THP183 Measurement of Femtosecond LCLS Bunches Using the SLAC A-line Spectrometer* linac, diagnostics, simulation, electron 2459
 
  • Z. Huang, A. Baker, M. Boyes, J. Craft, F.-J. Decker, Y.T. Ding, P. Emma, J.C. Frisch, R.H. Iverson, J.J. Lipari, H. Loos, D.R. Walz
    SLAC, Menlo Park, California, USA
  • C. Behrens
    DESY, Hamburg, Germany
 
  We describe a novel technique and the preliminary experimental results to measure the ultrashort bunch length produced by the LCLS low-charge, highly compressed electron bunch. The technique involves adjusting the LCLS second bunch compressor followed by running the bunch on an rf zero-crossing phase of the final 550-m of linac. As a result, the time coordinate of the bunch is directly mapped onto the energy coordinate at the end of the linac. A high-resolution energy spectrometer located at an existing transport line (A-line) is then commissioned to image the energy profile of the bunch in order to retrieve its temporal information. We present measurements of the single-digit femtosecond LCLS bunch length using the A-line as a spectrometer and compare the results with the transverse cavity measurement as well as numerical simulations.  
 
THP193 Study of Single and Coupled-Bunch Instabilities for NSLS-II simulation, cavity, dipole, damping 2483
 
  • G. Bassi, A. Blednykh
    BNL, Upton, New York, USA
 
  We study single and coupled-bunch instabilities for the NSLS-II storage ring with a recently developed parallel tracking code. For accurate modelling of the coupled-bunch instability, we investigate improvements to current point-bunch models to take into account finite bunch-size effects.