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Abstract

For more than four decades, the University of Bonn
has supported research at the in house electron accelera-
tor ELSA. Currently, polarized electrons gained from an
inverted source are accumulated in a stretcher ring and ac-
celerated within a fraction of a second up to 2.4 GeV. Dur-
ing the fast ramping various depolarizing resonances are
crossed. By taking several suitable measures (closed orbit
correction, tune jumping, etc.), a high polarization degree
of up to 65 % is conserved. One important part of these
measures is the correction of integer resonances. Those
resonances are compensated by applying additional hori-
zontal fields, distributed sinusoidally along an one-turn or-
bit length. In case of an appropriate setting of amplitude
and phase, all resonance driving effects should be neutral-
ized completely. Detailed studies have shown that ver-
tical displacements and resulting horizontal fields in the
quadrupole magnets, caused by the resonance correction,
have to be taken into account as well. With regard to a new
correction scheme, the first experimental results confirmed
by theoretical studies will be presented.

MOTIVATION

The ELectron Stretcher FAcility (ELSA) features appro-
priate conditions1 to accelerate a polarized electron beam
to an energy of typically 2.4 GeV (see Figure 1). During
the acceleration we are faced with various depolarizing ef-
fects. Nevertheless, under consideration of all optimiza-
tions a mean degree of polarization higher than 65 % at the
extraction can be obtained.

This optimization process has to avoid resonances with
high strength as well as to compensate for resonance driv-
ing fields. For instance, due to the fast energy ramp higher
order resonances are negligible and thus only the first order
resonances, namely intrinsic and integer resonances, have
to be suppressed.

Taking into account only flat circular accelerators with-
out solenoids and neglecting longitudinal fringe fields, the
polarization vector precesses according to the Thomas-
BMT equation [1] (1 + aγ) times per revolution, where
a = 0.00115967 is the gyromagnetic anomaly and γ is
the Lorentz factor. Along an one-revolution-orbit the act-
ing magnetic fields oscillate in the rest frame of the elec-
trons. Neglecting longitudinal fields, only horizontal fields
depolarize the beam, when they appear in phase with the
precession of the polarization.

∗ boldt@physik.uni-bonn.de
1This includes for example an inverted source of polarized electrons, a

fast ramping booster synchrotron as well as a fast ramping stretcher ring.
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Figure 1: ELSA overview. Shown are the main compo-
nents of the ELSA-accelerator facility. Furthermore, the
notation for the appearing kick angles as well as the spin
phase advance for the third integer resonance γa = 3 is
shown (description below).

For the intrinsic resonance condition, the polarization
precesses in phase with the vertical betatron oscillation.
This kind of depolarizing effect is suppressed via a so
called tune jump correction [2].
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Figure 2: The vertical traces of the beam position monitors
are shown (colored for each bpm and in black for RMS)
during the energy ramp in the stretcher ring (1.2–2.4 GeV
with 4 GeV/s). The correction for the integer resonances
causes additional vertical displacements.

Even though the polarization commonly does not pre-
cess in phase with the revolution frequency ωL, for multi-
ples of approx. 440 MeV the factor (1 + aγ) becomes an
integer and the integer resonance can be excited (see Fig-
ure 2). In this case, the resonance driving fields are caused
by misalignments of the magnetic elements and field errors.
The resonance driving part of the mentioned fields should
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be compensated for in order to achieve a high degree of po-
larization. Currently, the latter is executed empirically by
applying sinusoidally2 distributed fields along the orbit us-
ing vertical corrector dipoles. Due to these fields the orbit
is shifted and therefore additional horizontal fields act in-
side the quadrupoles on the electrons. The resulting field
distribution differs in this case from the desired one.

Via a new formalism a current scheme for the vertical
correctors is generated in order to gain the desired field
confi guration. The present contribution is dedicated to the
first studies and empirical results regarding the mentioned
formalism.

THE NEW INTEGER RESONANCES
CORRECTION SCHEME

Only the part of the field distribution which acts in phase
with the spin precession influences the strength of the inte-
ger resonance significantly. Thus, we have to focus on the
fraction of the field distribution that oscillates in the rest
frame of the electrons in the horizontal plane with (aγ ωL).
In the following we simply call this depolarizing compo-
nent the disturbing fields.

The degree of polarization should be optimized by su-
perposing the disturbing fields destructively. Since mis-
alignments as well as field errors are not known precisely
enough, the degree of polarization is maximized empiri-
cally. For that, the polarization is measured via Moeller
polarimetry at the experiment while changing both ampli-
tude and phase of the applied field distribution.

We focus in the following on the third integer resonance
to get a clear arrangement, but the presented studies hold
for other integer resonances as well.

Previous Correction Scheme

First, the so called spin phase advance will be intro-
duced. It is an appropriate quantity to describe the hori-
zontal field distribution along the orbit.

For aγ = 3 the polarization precess 3 · 360 ◦ around the
leading dipole fields per turn. By means of a number of
24 dipole magnets, the polarization precesses with a spin
phase advance of θ = 3 · 360 ◦/24 = 45 ◦ per dipole.

In between two adjacent dipoles all horizontal fields
(usually normalized given as kick angles α (see Figure 1))
must be summarized to get the integral kick angle for the
n-th segment. If at least one corrector per segment is avail-
able and if one neglects the additional horizontal fields in-
side the quadrupoles, a smooth sinusoidal field distribution
with defined amplitude and phase can be applied (see green
dots in Figure 3 compared to the intended field distribution
indicated by the red line). However, if the additional fields
inside the quadrupoles are taken into account, the origi-
nally sinusoidal field distribution is disturbed and ampli-
tude and phase differ in general from the expected distri-

2The frequency is set according to the number of whole precessions
aγ.

bution. From Figure 3 it can be seen that the integral kick
angles differ in this case strongly from the intended ones.
A least square fit and the large errors demonstrate the dis-
crepance between desired field configuration and the actu-
ally acting fields. In spite of the explained systematic com-
plications, the degree of polarization can still be optimized
empirically via this kind of correction.
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Figure 3: Correction of third integer resonances accord-
ing to the previous scheme. Each set of samples (green,
blue and black dot) represent one dipole segment. The
green dots fit smoothly into the desired field distribution
(red line). In contrast, the integral kick angles vary strongly
from the desired field and a χ2/dof = 24.203 is obtained.

Formalism Regarding Additional Horizontal
Fields Inside the Quadrupoles

It takes two general tasks to account for the additional
displacements inside the quadrupoles. First, the integral
kick angle for each dipole segment has to be calculated.
Second, the resulting equation system has to be solved.

For the n-th segment between dipole n and n+ 1 all in-
cluded horizontally acting fields (αcorr,m for the kick angle
of the m-th corrector and αquad,l for the l-th quadrupole)
must be summed to obtain the integral kick angle αn:

αn =
∑

m∈segm.n

αcorr,m +
∑

l∈segm.n

αquad,l . (1)

The sum of the corrector kick angles can be easily calcu-
lated, since only those correctors contribute, which are lo-
cated inside each segment.

The acting field inside each quadrupole depends on the
whole set of the kicks of the correctors. The kick angle can
be calculated as follows. A dipole approximation for the
quadrupole field yields:

αquad,l = arctan

(
L

1
klΔzl

−Δzl

)

≈ kl ·Δzl · L . (2)

for small displacements Δz << 1 m, quadrupoles of
strength k < 1m−2 and lengths L = 0.5 m.
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The displacements Δzl can be measured via beam po-
sition monitors3 and depend again on each corrector kick
angle. If linear optic is assumed, a quotient

ORMjk =
Δzj
Δαk

(3)

of applied kick angle Δαk and resulting displacementΔzj
inside the monitor is given either by simulation or can be
measured. The dependence of the displacement inside the
quadrupoles on each corrector kick angle is contained by
the so called orbit response matrix ORM.

Using equation (1), (2) and (3), the complete kick angle
in the n-th segment can be given depending on all Ncorr

corrector kick angles:

αn =
∑
m

∈segm.n

αcorr,m + L ·
∑

l
∈segm.n

kl · (ORM �αcorr)l

=
∑
m

∈segm.n

αcorr,m + L ·
∑

l
∈segm.n

Ncorr∑
j=1

kl · ORMlj αcorr,j · .

This yields an equation system for all 24 integral kick an-
gles which can be written vectorially:

�α =
(
HCMcorr +HCMORM

)
�αcorr

= HCM24×Ncorr �αcorr (4)

The dimension of so called harmonic correction matrix
HCM is determined by the number of segments and by
the number of correctors being used. Equivalent to the
equation for a one-segment-integral kick angle, the har-
monic correction matrix can be split up into a corrector
scheme part and a part depending on the ORM, strength
and length of the quadrupoles4.

It is aimed to solve equation (4) for sinusoidally dis-
tributed integral kick angles. To achieve this a singular
value decomposition is used, since in general HCM is not
a square matrix. A formalism to solve such an equation sys-
tem utilizing singular value decomposition (SVD) is given
in [3]. The whole formalism was implemented into the ac-
celerator control system.

Figure 4 is comparable to Figure 3. Indeed, the correc-
tor kick angles do not fit desired curve, but the integral kick
angles, by means of summarizing corrector and quadrupole
kick angles, fit well to the curve. The errors of the fit pa-
rameters as well as χ2/dof = 0.925 show the advantage of
the new correction scheme for this example.

3Since the beam position monitors are mounted very close to the
quadrupoles, the measured position nearly equals to the displacement in-
side the quadrupoles.

4If the HCMORM part is not considered, the solution of equation (4)
holds results which are equivalent to those using the previous correction
scheme.
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Figure 4: Correction of third integer resonances accord-
ing to the new scheme. Each set of samples (green, blue
and black dot) represent one dipole segment. In compari-
son with the previous correction, the integral kick angles
fit well to the desired field (red line) and a much better
χ2/dof = 0.925 is obtained.

RESULTS AND RECENT
DEVELOPMENTS

The presented studies contain the recent developments
regarding a new integer resonance correction scheme. It
is shown that the previous used correction scheme does
not provide defined sets of adjusted field distribution and
is thus not appropriate to maximize systematically the de-
gree of polarization. The new correction scheme by means
of using the ORM offers an enhanced possibility to op-
timize integer resonances at ELSA. The presented exam-
ple indicates the potential of the described method. With
respect to the new correction scheme, the accuracy of the
SVD-formalism will have to be investigated. A high ac-
curacy is accompanied by larger kick angles and can lead
currents, which are higher than the limitation given by the
power supplies. Studies will show which accuracy results
in a good compromise between acceptable corrector cur-
rents and desired field distributions.
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