Keyword: heavy-ion
Paper Title Other Keywords Page
MOP203 RHIC Spin Flipper AC Dipole Controller dipole, feedback, controls, LLRF 474
 
  • P. Oddo, M. Bai, W.C. Dawson, D.M. Gassner, M. Harvey, T. Hayes, K. Mernick, M.G. Minty, T. Roser, F. Severino, K.S. Smith
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under contract DE-AC02-98CH10886 with the U.S. Department of Energy and RIKEN, Japan.
The RHIC Spin Flipper's five high-Q AC dipoles which are driven by a swept frequency waveform require precise control of phase and amplitude during the sweep. This control is achieved using FPGA based feedback controllers. Multiple feedback loops are used to control and dynamically tune the magnets. The current implementation and results will be presented.
 
 
MOP206 Calibration and Performance of a Secondary Emission Chamber as a Beam Intensity Monitor ion, vacuum, proton, electron 480
 
  • M. Sivertz, I.-H. Chiang, A. Rusek
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and with support of NASA.
We report on a study of the behavior of a secondary emission chamber (SEC). We show the dependence of the SEC signal on the charge and velocity of the primary beam for beams of protons, and heavy ions including Helium, Neon, Chlorine and Iron. We fill the SEC with a selection of different gases including Hydrogen, Helium, Nitrogen, Argon, and air, studying the SEC response when it is acting as an ion chamber. We also investigate the behavior of the SEC at intermediate pressures between 10-8 torr and atmospheric pressure.
 
 
MOP210 Residual Gas Fluorescence Monitor at RHIC ion, emittance, vacuum, injection 492
 
  • T. Tsang, D.M. Gassner
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work was supported by U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
A residual gas fluorescence beam profile monitor at the relativistic heavy ion collider (RHIC) has successfully recorded vertical beam sizes of Au-ion beams from 3.85 to 100 GeV/n during the 2010 beam runs. Although the fluorescence cross section of Au-ion is sufficiently large, the low residual gas in a typical vacuum chamber of <10-9 torr produces necessary weak fluorescence photons. However, with adequate CCD exposure time, the vertical beam profiles are captured to provide an independent measurement of the RHIC beam size and emittance. This beam diagnostic technique, utilizing the Au-ion beam induced fluorescence from residual gas where hydrogen is still the dominant constituent in nearly all vacuum system, represents a step towards the realization of a truly noninvasive beam monitor for high-energy particle beams.
 
 
MOP231 Absolute Beam Flux Measurement at NDCX-I Using Gold-Melting-Calorimetry Technique ion, monitoring, brightness, laser 540
 
  • P.N. Ni, F.M. Bieniosek, S.M. Lidia
    LBNL, Berkeley, California, USA
  • J.R. Welch
    Cornell University, Ithaca, New York, USA
 
  Funding: Supported by the U.S. Department of Energy under Contracts No. DE-AC02-05CH11231 and DE-AC52-07NA27344.
We report on an alternative way to measure beam fluence at NDCX-I, which is necessary for numerical simulation and planning of warm-dense-matter (WDM) experiments. So far the NDCX-I beam fluence has been characterized using a fast Faraday cup, radiation from a scintillator and tungsten foil calorimeter techniques. The present beam intensity is sufficient to melt and partially evaporate a 150 nm thick gold foil. Thermal emission (function of temperature) of the gold foil in the visible spectrum was measured during beam irradiation. A distinct shelf in the thermal emission intensity was observed after 600 ns, indicating that the sample reached the melting temperature. Using known heat capacity and latent heat of melting, the beam flux fully determines the duration of the melting shelf and the moment it appears. Using this technique we estimate an average 260 kW/cm2 beam flux over 10μs, which is consistent with values provided by the other methods.
 
 
MOP247 Quick Setup of Unit Test For Accelerator Controls System controls, kicker, status, collider 574
 
  • W. Fu, T. D'Ottavio, D.M. Gassner, J. Morris, S. Nemesure
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Testing a single hardware unit of an accelerator control system often requires the setup of a graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all testing and control logic. The third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.
 
 
MOP248 Automating Power Supply Checkout power-supply, controls, collider, ion 577
 
  • J.S. Laster, D. Bruno, T. D'Ottavio, J. Drozd, G.J. Marr, C. Mi
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Power Supply checkout is a necessary, pre-beam, time-critical function. At odds are the desire to decrease the amount of time to perform the checkout while at the same time maximizing the number and types of checks that can be performed and analyzing the results quickly (in case any problems exist that must be addressed). Controls and Power Supply Group personnel have worked together to develop tools to accomplish these goals. Power Supply checkouts are now accomplished in a time-frame of hours rather than days, reducing the number of person-hours needed to accomplish the checkout and making the system available more quickly for beam development.
 
 
TUP181 A Monitoring System for CSR Power Supply monitoring, power-supply, ion, target 1169
 
  • W. Zhang, S. An, S. Gou, W.M. Qiao, Y.P. Wang, F. Yang, Y.J. Yuan
    IMP, Lanzhou, People's Republic of China
 
  This article elaborated the monitoring system which has applied in the CSR power supply. This system is composed of the hardware and the software. The hardware is composed of PS6040-PXI-18 PXI engine case +PXI-3800 the master controller +PXI-6133 the ADC card. The software uses NI Corporation's LABVIEW to carry on the data demonstration and the analysis. This monitoring system in the CSR debugging, in the acceptance and the running has played the influential role. At the same time, it provided the data for the physical person. This monitoring system has run four years in the CSR.  
 
TUP288 A Very Thin Havar Film Vacuum Window for Heavy Ions to Perform Radiobiology Studies at the BNL Tandem ion, vacuum, light-ion, proton 1367
 
  • P. Thieberger, H. Abendroth, J.G. Alessi, L. Cannizzo, C. Carlson, A. Gustavsson, M.G. Minty, L. Snydstrup
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Heavy ion beams from one of the BNL Tandem Van de Graaff accelerators will be made available for radiobiology studies on cell cultures. Energy losses need to be minimized both in the vacuum window and in the air in order to achieve the ranges required for the cells to be studied. This is particularly challenging for ions heavier than iron. The design is presented of a 0.4” diameter Havar film window that will satisfy these requirements. Films as thin as 80μinches were successfully pressure tested. The final thickness to be used may be slightly larger to help in achieving pin hole free windows. We discuss design considerations and present pressure and vacuum test results as well as tests with heavy ion beams.
 
 
WEOAS1 Inertial Fusion Driven by Intense Heavy-Ion Beams ion, target, plasma, acceleration 1386
 
  • W. M. Sharp, J.J. Barnard, R.H. Cohen, M. Dorf, A. Friedman, D.P. Grote, S.M. Lund, L.J. Perkins, M.R. Terry
    LLNL, Livermore, California, USA
  • F.M. Bieniosek, A. Faltens, E. Henestroza, J.-Y. Jung, A.E. Koniges, J.W. Kwan, E. P. Lee, S.M. Lidia, B.G. Logan, P.N. Ni, L.R. Reginato, P.K. Roy, P.A. Seidl, J.H. Takakuwa, J.-L. Vay, W.L. Waldron
    LBNL, Berkeley, California, USA
  • R.C. Davidson, E.P. Gilson, I. Kaganovich, H. Qin, E. Startsev
    PPPL, Princeton, New Jersey, USA
  • I. Haber, R.A. Kishek
    UMD, College Park, Maryland, USA
 
  Funding: Work performed under the auspices of the US Department of Energy by LLNL under Contract DE-AC52-07NA27344, by LBNL under Contract DE-AC02-05CH11231, and by PPPL under Contract DE-AC02-76CH03073.
Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic- confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.
 
slides icon Slides WEOAS1 [18.657 MB]  
 
WEP098 Formation of High Charge State Heavy Ion Beams with Intense Space Charge ion, space-charge, target, electron 1657
 
  • P.A. Seidl, J.-L. Vay
    LBNL, Berkeley, California, USA
 
  Funding: This work was performed under the auspices of the U.S Department of Energy by LBNL under contract DE-AC02-05CH11231.
High charge-state heavy-ion beams are of interest and used for a number of accelerator applications. Some accelerators produce the beams downstream of the ion source by stripping bound electrons from the ions as they pass through a foil or gas. In other accelerator systems, ions of charge state >1 are produced directly in the ion source. Heavy-ion inertial fusion (HIF) would benefit from low-emittance, high current ion beams with charge state >1. For these accelerators, the desired dimensionless perveance upon extraction from the emitter is ~0.001, and the electrical current of the beam pulse is ~ 1 A. For accelerator applications where high charge state and very high current are desired, space charge effects might present unique challenges. For example, in a stripper, the separation of charge states might create significant nonlinear space-charge forces which would impact the beam brightness. We will report on the particle-in-cell simulation of the formation of such beams for HIF, and review the possible technical approaches.
 
 
WEP101 Smooth Approximation of Dispersion with Strong Space Charge space-charge, emittance, beam-transport, focusing 1665
 
  • S. Bernal, B.L. Beaudoin, T.W. Koeth, P.G. O'Shea
    UMD, College Park, Maryland, USA
 
  Funding: This work is funded by the US Dept. of Energy Offices of High Energy Physics and High Energy Density Physics, and by the US Dept. of Defense Office of Naval Research and Joint Technology Office.
We apply the Venturini-Reiser envelope-dispersion equations* to a continuous beam in a uniform focusing/bending lattice to study the combined effects of linear dispersion and space charge. Within this simple model we investigate the scaling of average dispersion and the effects on beam dimensions; we also introduce a generalization of the space-charge intensity parameter and apply it to the University of Maryland Electron Ring (UMER) and other machines. In addition, we present results of calculations to test the smooth approximation by solving the Venturini-Reiser original equations and also through simulations with the code ELEGANT.
*M. Venturini and M. Reiser, Phys. Rev. Lett. 81, 1, p. 96, 6 July 1998
 
 
THP041 Particle Dynamics Simulation in Wobbler System for Hollow High Energy Heavy Ion Beam Formation simulation, target, focusing, ion 2193
 
  • S. Minaev, N.N. Alexeev, A. Golubev, G. Kropachev, T. Kulevoy, B.Y. Sharkov, A. Sitnikov, T. Tretyakova
    ITEP, Moscow, Russia
 
  Funding: Work supported by Rosatom contract #N.4е.45.90.10.1065
Intense heavy ion beam is an efficient tool to generate high energy density states in macroscopic amounts of matter. As result it enables to study astrophysical processes in the laboratory under controlled and reproducible conditions. For advanced experiments in high energy density physics the cylindrical target irradiated by hollow cylindrical beam is required. A new method for RF rotation of the ion beam is applied for the formation of the required hollow beam. The RF system consisting of two four-cell H-mode cavities with a resonant frequency of 297 MHz was chosen. The layout of the suggested rotating system for hollow beam formation including focusing elements is presented. The particle dynamics simulation was carried out for expecting beam parameters at ITEP Terawatt Accumulator project (ITEP TWAC). The results of simulation is considered in this paper.
 
 
THP044 Linear Accelerator Design Study with Direct Plasma Injection Scheme for Warm Dense Matter ion, target, plasma, laser 2199
 
  • K. Kondo, M. Okamura
    BNL, Upton, Long Island, New York, USA
  • T. Kanesue
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka, Japan
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Warm Dense Matter (WDM) is a growing rapidly science field, which is related to planetary science and inertial fusion. It is difficult to expect the behavior because the state with high density and low temperature is completely different from ideal condition. The well-defined WDM generation is required to understand it. Moderate energy ion beam (~ 0.3 MeV/u) slightly above Bragg peak is an advantageous method for WDM because of the uniform energy deposition. Direct Plasma Injection Scheme (DPIS) with a linear accelerator has a potential for the beam parameter. The design of linear accelerator for WDM is presented.
 
 
THP053 The New Approximation of Dose Attenuation Curve in Concrete shielding, neutron, ion, target 2217
 
  • M. Petrichenkov, V.Ya. Chudaev
    BINP SB RAS, Novosibirsk, Russia
 
  The analytical approach in shielding calculations is simple and fast method for quick estimations. But it provides less accuracy than Monte-Carlo one. Often the exponential attenuation of dose in shielding is considered. But also it is necessary to take into account the dose increase in the first layers of shielding due to initial accumulation of neutrons. The new approximation of dose attenuation curve in concrete is offered for quick analytical estimations of shielding of hadron accelerators. It allows to make fast estimation of shielding thickness enough correctly.  
 
THP054 Medium Energy Heavy Ion Operations at RHIC luminosity, emittance, ion, monitoring 2220
 
  • K.A. Drees, L. A. Ahrens, M. Bai, J. Beebe-Wang, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, C. Carlson, R. Connolly, T. D'Ottavio, W. Fischer, W. Fu, D.M. Gassner, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, P.F. Ingrassia, N.A. Kling, M. Lafky, J.S. Laster, R.C. Lee, V. Litvinenko, Y. Luo, W.W. MacKay, M. Mapes, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, F.C. Pilat, V. Ptitsyn, G. Robert-Demolaize, T. Roser, P. Sampson, T. Satogata, V. Schoefer, C. Schultheiss, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, M. Wilinski, A. Zaltsman, K. Zeno, S.Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n.