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Abstract 
Designing and simulating complex magnet systems 

needed for cooling channels in both neutrino factories and 
muon colliders requires innovative techniques to correct 
for both chromatic and spherical aberrations. Optimizing 
complex systems, such as helical magnets for example, is 
also difficult but essential. By using COSY INFINITY, a 
differential algebra based code, the transfer and aberration 
maps can be examined to discover what critical terms 
have the greatest influence on these aberrations. 

INTRODUCTION 
The challenging emittance size needed to implement a 

neutrino factory or muon collider has motiviates searches 
for innovating techniques in beam cooling [1, 2].  For 
example, the use of Parametric-resonance Ionization 
Cooling (PIC) has been proposed for the final stage of 6D 
cooling of a high-luminosity muon collider [3].  In this 
system, an induced resonance is used to cause periodic 
beam size reductions, and ionization cooling is then 
achieved via wedges of absorbing materials.  An epicyclic  
twin helical channel offers to achieve the goals of PIC, 
correlating the dispersion and betatron functions of the 
beam [4].  The critical challenges of this system include 
correcting chromatic and spherical aberrations induced in 
the channel.  

USING COSY INFINITY TO STUDY 
ABERRATIONS IN A SYSTEM 

COSY INFINITY (COSY) is a DA-based code 
allowing simulation of beam transfer and aberration maps 
to arbitrary order [5].  With modification of the base code, 
the twin helix channel was implemented and simulated in 
COSY [6].  In these simulations, COSY takes a reference 
particle defined as: 

   kkkkkkk tbyaxr ,,,,,    (1) 

Where a and b are the dimensionless horizontal and 
vertical momentum, t is time of flight and δ is the change 
in total energy of the particle.  COSY calculates the 
function, M, known the transfer map (or taylor map) for 
the system, which described the evolution of particles in 
the system.  The linear terms of the transfer map function 
comprise the matrix M, often referred to as the linear map 
or transfer matrix of the system [5], that satisfies the 
relation: 
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The non-linear terms, N, remaining in the transfer map 

can be expressed separately: 
 
M = M + N     (3) 
 
In terms of the component of the transfer map, each of 

the final vector components for a particle can be 
expressed in form: 
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Where the terms are summed over (ix,ia,iy,ib,it,iδ) for 

each component. The terms in the transfer map of 2nd or 
higher order are commonly referred to as aberrations.  
COSY calculated these aberrations and generates output, 
referred to as an aberration map.  The aberration map is in 
a format similar to the transfer map. 

Examination of the transfer and aberration maps 
provides important clues in improving a beam system.  If, 
for example, the input suffers from large variation in 
initial angle and final horizontal position needs 
minimization to fit a particular aperture in the beamline, 
then aberrations in (xf) dependent on initial angle (ai) may 
be particularly important to minimize.  We would want to 
pay particular attention to terms in the aberration map 
involving higher orders of a, such as (x|aa) or (x|aaa).  If 
those terms are not minimized, variations in initial angle 
threaten to blow up the horizontal position of the final 
beam.   Similarly, if we know that initial position is small, 
we can put less emphasis on minimizing aberrations that 
depend on (xi), particularly higher order terms involving 2 
or more powers of x, such as (x|axx), where initial 
position may dominate initial angular spread. 

To minimize these aberrations, it is also important to 
recognize how magnetic systems contribute to the transfer 
map.  The linear terms of the transfer map are determined 
by the dipole and quadrupole moments of magnetic 
elements.  Correction for higher order aberrations requires 
use of higher order multipoles.  Thus, sextupoles are used 
to correct 2nd order aberrations, and octupoles are used for 
3rd order aberrations. 

Using various symmetries of the beam system can also 
be an effective technique for aberration correction [7].  
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