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Abstract

We study single and coupled-bunch instabilities for the

NSLS-II storage ring with a recently developed parallel

tracking code. For accurate modelling of the coupled-

bunch instability, we investigate improvements to current

point-bunch models to take into account finite bunch-size

effects.

INTRODUCTION

Accurate modelling of single and coupled-bunch insta-

bilities is of crucial importance for the machine perfor-

mance of light sources such as NSLS-II, that provide high

current beams [1]. The complexity of the model consists

in the accurate calculation of the impedance of the various

components of the ring that can excite single and multi-

bunch instabilities via short and long range wakefields.

Moreover, a full account of the coupling between trans-

verse and longitudinal dynamics must be taken into account

to study effects such as chromaticity and Landau cavity

effects. A parallel algorithm for the study of single and

coupled-bunch instabilities has been implemented in a par-

ticle tracking code. The theoretical framework for single

bunch instabilities is the same used in the code TRANFT

[2], while for coupled-bunch instabilities a self-consistent

algorithm has been implemented to allow the study of fi-

nite bunch-size effects and multibunch effects in arbitrary

filling modes. In this paper we present numerical studies

of the microwave instability for NSLS-II and discuss the

self-consistent algorithm for simulation of coupled-bunch

instabilities.

PHYSICAL MODEL FOR SINGLE BUNCH
INSTABILITIES

For the study of single bunch instabilities we use the

same physical model implemented in the particle tracking

code TRANFT [2]. Model considers only one transverse

variable and couples the synchrotron and betatron motion.

The one turn map (s → s+C0, where s is path length and

C0 the ring circumference) for the longitudinal dynamics is

ε̄ = ε+
q

mc2
(V0(τ)− Vn(τ)) + δε− T0

Tr
ε + Vs(τ ; s)

τ̄ = τ +
T0η

β2γ0
ε̄ (1)
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where

V1(τ) = sin(ωrfτ + φs)− sinφs

Vn(τ) =
1

n2
sinφs(cosnωrfτ − 1) +

1

n
cosφs sinnωrfτ

Vs(τ ; s) = −
∫ τ

−∞
Ws(τ − τ ′)λ(τ ′; s)dτ ′.

Here ε is the energy deviation from the reference particle,

τ is arrival time, δε is a quantum excitation random kick,

T0 is the revolution time, Tr is the synchrotron radiation

damping time, η is the frequency slip factor and β = v0/c
for a reference particle with velocity v0 and Lorentz factor

γ0. V1 is the RF voltage of the fundamental cavity operat-

ing at ωrf = hω0 where ω0 = 2π/T0 and Vn is RF volt-

age of the Landau cavity operating at the nth harmonic of

ωrf . For the operation of NSLS-II a third harmonic Landau

cavity will be used to increase the bunch length without in-

creasing the energy spread. Vs is the longitudinal voltage

originated by the longitudinal bunch density λ(τ, s).

The one turn map for the transverse dynamics is com-

posed by the map

x̄ = x cosψ(ε) + p sinψ(ε)

p̄ = −x sinψ(ε) + p cosψ(ε) + xVd(τ ; s) + Vx(τ ; s)

ψ(ε) = ψ0 +
2πξ

β2γ0
ε, (2)

where

Vd(τ ; s) =

∫ τ

−∞
Wd(τ − τ ′)λ(τ ′; s)dτ ′,

Vx(τ ; s) =

∫ τ

−∞
Wx(τ − τ ′)Dx(τ

′; s)dτ ′

and by a kick due to radiation damping and diffusion

x̄ = x− T0

Tx
x+ δx, p̄ = p− T0

Tx
p+ δp. (3)

Here φ0 is the on-momentum phase advance, ξ is the chro-

maticity, Tx is the transverse radiation damping time and

δx and δp are quantum random excitations. The col-

lective force term Vd is driven by the transverse detun-

ing (or quadrupolar) wake Wd and the collective force

term Vx is driven by the transverse wake potential Wx.

Dx(τ ; s) =
∫
xf(ε, τ, x, p; s)dεdxdp is the instantaneous

transverse dipole density, where f is the phase space den-

sity.
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Figure 1: Top left: comparison of rms energy spread vs current for values of the wakepotential driven by a bunch length

of σ̄s = 0.01mm, σ̄s = 0.05mm and σ̄s = 0.25mm. Top center: rms energy spread vs number of turns for σ̄s = 0.01mm.

Top right: the same as top left for bunch length vs current. Bottom left: bunch length vs number of turns for σ̄s = 0.01mm.

Bottom center: longitudinal density for different values of current for σ̄s = 0.01mm. Bottom right: wakepotential

calculated with the code ECHO for σ̄s = 0.01mm.

Algorithm for Particle Smoothing
In the particle tracking code TRANFT an algorithm

based on fast Fourier transforms is used for smoothing.

Here we propose a density estimation technique based on a

Fourier expansion (see [4] for a detailed discussion). The

longitudinal densities are expanded in a finite Fourier se-

ries and the Fourier coefficients estimated via a Monte-

Carlo integration. This gives a representation of the den-

sities of class C∞. This Fourier expansion is very efficient

for parallelization since the computation of the Fourier co-

efficients can be distributed between the different proces-

sors and done without slave-to-slave communications. The

simulations for microwave instability discussed in the next

section have been done using 15M particles on 1000 pro-

cessors at NERSC with a CPU time of approximately 20

minutes.

MICROWAVE INSTABILITY
SIMULATIONS

Microwave instability simulations for NSLS-II have

been done in [3]. The effect of pseudo-Green’s functions

for the calculation of the longitudinal wakepotential on the

instability threshold has been studied for a minimum driv-

ing bunch length of σ̄s = 0.05mm, not to be confused with

the bunch length σs of the particle distribution of the ring

(the unperturbed nominal bunch length is σs = 4.5mm, as

shown in Figure 1 (right frame)). For a good approxima-

tion of the Green’s function used in the computation of the

wake σ̄s must be chosen small enough to give an accurate

representation of the wakepotential. The pseudo-Green’s

functions have been calculated with the code ECHO. The

microwave instability threshold was estimated to occur at

an average single-bunch current greater than I=5mA. In this

paper we calculate the instability threshold for a wakepo-

tential calculated from σ̄s = 0.01mm as shown in Figure 1

(bottom right). To check converge in the results we cal-

culate the wakepotentials corresponding to σ̄s = 0.05mm

and σ̄s = 0.25mm convolving the pseudo-Green’s func-

tion from σ̄s = 0.01mm with a Gaussian with σ = 0.05m

and σ = 0.25m respectively. We used the same NSLS-II

ring parameters as described in [3]. Here we recall that the

number of particles used in the simulations shown in Fig-

ure 1 is 15M. It is found that the instability thresholds for

σ̄s = 0.01mm and σ̄s = 0.05mm are roughly the same, as

plotted in Figure 1 (top left), therefore showing that a driv-

ing bunch of σ̄s = 0.05mm gives a good approximation to

the wakepotential for microwave instability simulations. In

Figure 1 (top center) we plot the rms energy spread vs num-

ber of turns for σ̄s = 0.01mm. A microwave instability

starts to develop at 3000 turns for I = 12mA. We conclude

that the microwave instability threshold is ≈ 10mA. In (top

right) we compare the bunch lengthening as a function of

current for the different wakepotentials. The bunch length-

ening is not so sensitive to the difference in σ̄s. In (bot-

tom left) and (bottom center) we show bunch lengthening

vs number of turns and longitudinal densities for different

current values for σ̄s = 0.01mm respectively.
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SELF CONSISTENT MODELLING OF
COUPLED BUNCH INSTABILITIES

The model implemented in TRANFT for the study of

coupled bunch instabilities (CBI) consists in tracking one

bunch according to a kick produced by all the other bunches

assumed to be distributed around the ring in a given con-

figuration. This allows a fast calculation of CBI thresh-

olds. Studies of CBI driven by resistive wall impedance

for NSLS-II has been done in [1]. The model is not self-

consistent and raises a question about accuracy and reli-

ability. Moreover, it does not allow the study of CBI in

arbitrary filling modes. For self-consistent modelling of

coupled bunch instabilities, we developed a parallel al-

gorithm where M bunches are distributed to M proces-

sors. The “history” of each bunch is stored in the mas-

ter processor and broadcasted to the slave processors for

the calculation of the coupled bunch kick. Let us con-

sider the case of M bunches filling uniformly the ring and

interacting via a transverse dipole wakefield. We let the

bunches circulate around the ring for n̂ turns and then turn

on the coupled bunch interaction. We assume that bunch j
(j = 0, ..,M − 1) receives a coupled bunch kick at loca-

tions sj = s0 + jC0/M

V j
CB(τ, sj) =

M−1∑
m=0

∑
k

cmk

∫ τ

−∞
Wx(τ − τ ′)

× Dm
x (τ ′, sj − kC0)dτ

′, (4)

where cmk = (1 − δ0mδ0k) and Dm
x is the instantaneous

transverse dipole density of bunch m.

Finite Bunch Length Effects

In many applications, such as coupled bunch instabili-

ties driven by higher-order-modes in RF cavities, the long

range wakefields vary over the bunch length of consecutive

bunches, therefore finite bunch length effects must be taken

into account.

In the case of the transverse dipole wakefield , if the long

range part varies over the support of Dm
x (τ, sj − kC0), we

calculate VCB taking advantage of the Fourier expansion

mentioned above. Specifically, from

D̂m
x (z, s) =

J∑
j=0

cmj (s)φj(z),

where {φj} is the orthonormal basis φ0(z) = 1 and

φj(z) =
√
2 cos(jπz) for j ≥ 1, z ∈ [0, 1], it follows

Dm
x (τ, s) =

1

2L

J∑
j=0

cmj (s) cos
[πj
2

( τ

L
+ 1

)]
, (5)

where τ ∈ [−L,L], i.e. we assume that the distribution in

arrival time is zero outside the interval [−L,L], L = 5στ .

Therefore, the contribution to the coupled bunch kick of

bunch 1 on bunch 0 at the present turn is

V 0←1
CB (τ, s) =

∫ τ

−∞
Wx(τ − τ ′)D1

x(τ
′, s)dτ ′ (6)

=
1

2L

J∑
j=0

c1j (s)

∫ τ

−∞
cos

[πj
2

(τ ′
L

+ 1
)]

Wx(τ − τ ′)dτ ′.

This representation allows a fast calculation of CBI effects

since in typical applications one is interested in calculating

only few Fourier coefficients cmj (s). Notice that the cmj (s)
are the only dynamical quantities to be determined for the

coupled bunch kick and that the integral in (4) can be cal-

culated upfront before to start the particle tracking. In case

the CBI is driven by the transverse resistive wall wakefield

Wx(τ) = H(τ)
cLx

πb3

√
Z0ρ

πcτ
(τ � s̄/c), s̄ =

(
2b2ρc
Z0

)1/3

where H is the Heaviside step function, we notice that

since the separation between bunches is Tb = T0/M and

the bunch length στ << Tb, assuming Wx(τ) ≈ Wx(Tb)
for τ ∈ [Tb − 5στ , Tb + 5στ ] it follows

V 0←1
CB (τ, s0) = V 0←1

CB (s0) = Wx(Tb)X
1(s0).

where X(s) =
∫
Dx(τ ; s)dτ , thus recovering the standard

formula for point bunches

V j
CB(sj) =

M−1∑
m=0

∑
k

cmkWx(a
j
mk)X

m
k (sj − kC0),

where ajmk = (m− j)Tb + cmkkT0 +H(j −m)T0.

CONCLUSION
In this paper we discussed the microwave instability

for the NSLS-II ring in the limit of very short driving

bunches for the calculation of the longitudinal wakepoten-

tials, showing that σ̄s = 0.05mm gives a good represen-

tation of the longitudinal wakepotentials. We discussed

a self-consistent model of coupled bunch instabilities and

how the model takes into account of finite bunch length ef-

fects. We are planning to apply the self-consistent model to

study coupled bunch instabilities for NSLS-II. Specifically,

we plan to study chromaticity effects and Landau cavity

effects in arbitrary filling mode. Based on these studies,

a model of a transverse bunch-by-bunch feedback system

will be included in the simulations to damp the instabili-

ties.
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