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Abstract
In this paper we present a multiobjective approach to the

dynamic aperture (DA) optimization. Taking the NSLS-
II lattice as an example, we have used both sextupoles
and quadrupoles as tuning variables to optimize both on-
momentum and off-momentum DA. The geometric and
chromatic sextupoles are used for nonlinear properties
while the tunes are independently varied by quadrupoles.
The dispersion and emittance are fixed during tunes varia-
tion. The algorithms, procedures, performances and results
of our optimization of DA will be discussed and they are
found to be robust, general and easy to apply to similar
problems.

INTRODUCTION

Dynamic Aperture (DA) is one of the key nonlinear
properties for a storage ring. Although there have been
numerical tools to find the aperture, the reverse problem
of how to optimize it is still a challenging problem. One
approach of minimizing nonlinear driving terms has been
applied to the lattice of National Synchrotron Light Source
II (NSLS-II) storage ring [1, 5]. Recently, an alterna-
tive approach of using Multiobjective Evolutionary Algo-
rithm (MOEA) [7, 6, 8, 3, 4] is developed. In the following
sections we will take NSLS-II lattice as an example to dis-
cuss the procedures and results of this new approach to DA
optimization.

Figure 1: Lattice functions and magnet layout of one DBA
cell.

NSLS-II is a state-of-the-art third-generation light
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source under construction at Brookhaven National Labo-
ratory (BNL) [2]. The lattice has 30 double bend achro-
matic (DBA) cells. Each DBA cell has low and high beta
functions at each side, with a short and long straight sec-
tion respectively. Every nearby two DBA cells have mir-
ror symmetry about the center of the straight section (see
Fig. 1). The whole bare lattice has 15-fold symmetry. Each
DBA cell has nine sextupoles, three sitting in between the
dipoles have non-zero dispersion and are used for adjusting
chromaticities. The other six, three on each side, are at the
non-dispersive straight section. Three damping wigglers
are included in the 2nd, 7th and 12th long straight sections
but the 3-fold linear lattice is matched to be approximately
15-fold symmetric.

OBJECTIVE FUNCTIONS AND
CONSTRAINTS

Instead of starting from a single initial solution, MOEA
is applied to a set of candidate solutions iteratively. Each
iteration is called one generation. At the first step, a fixed
number of candidates are initialized as the first generation,
and in our case they are uniformly distributed in parameter
space [xL

1 , x
U
1 ] × [xL

2 , x
U
2 ] × · · · × [xL

N , xU
N ] . Then one

pair of them is randomly chosen as parents to generate two
new children. This process is called cross-over and is re-
peated until the population is doubled. The third step is
called mutation, where new children are perturbed slightly.
The objective functions fi(x), constraints gj(x) are evalu-
ated for each of these new children. The whole population,
including the parents, is then sorted or ranked according to
their dominance relations (see [6, 8] for dominance). Can-
didates not dominated by anyone are in the first rank. The
second rank candidates are only dominated by the rank-one
candidates, and the third ranks are only dominated by the
first and second ranks, etc. The final step is a population
control process, where only half of the better candidates
are kept. This is done by dropping candidates with larger
rank. Within same rank, candidates in a high population
density region have lower priority to be kept. This is called
one generation or one iteration. The population is evolved
generation by generation until it converges or reaches the
maximum number of iterations.

The DA used for objective function in our optimization
is from direct tracking and it is a measure of survival par-
ticles after certain turns of tracking. Given initial (x, y, δ),
the particles are tracked in a ring where various kinds of er-
rors are included, e.g. misalignment, multipole errors. The
objective functions of DA optimization are geometries of
DA at different momentum and are quantified by their area
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and an interior ellipse (in x–y plane) they must cover (See
Fig. 2). The DA area is the number to maximize and cov-
ering the interior ellipse is the constraints of optimizations.

Figure 2: Examples of dynamic aperture in x–y plane (top)
for 13 uniformly distributed δ ∈ [−3%, 3%] and δ–x
plane (bottom) for y = 1μm and y = 1 mm. The dashed
lines in each subplot are the constraints.

As shown in the top figure of Fig. 2, the objective func-
tions and constraints for x–y plane are

⎧
⎪⎨

⎪⎩

f1 = S(δ = 0)

f2 = S(δ = −2.5%) + S(δ = 2.5%)

gk =
x2
i (δk)
A2

x
+

y2
i (δk)
A2

y
− 1 ≥ 0

(1)

where f1 the DA area of δ = 0, f2 the average of DA
area of δ = ±2.5%, gk the constraints for DA at δk =
−2.5%, 0, 2.5% (k = 1, 2, 3) and Ax, Ay the axes of con-
straint ellipse. gk ≥ 0 are set to optimize the overall shape
of the DA instead of area alone. A similar setting which
emphasize the δ–x plane can be setup as the following:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f1 =
∑

δ S(δ, y = 1μm) (δ ∈ [−3%, 3%])

f2 = 1/

[(
∂νx
∂Jx

)2

+

(
∂νx
∂Jy

)2

+

(
∂νy
∂Jy

)2
]

gp,i = xp,i(δi)−Ax,p ≥ 0

gn,i = xn,i(δi)−Ax,n ≥ 0

(2)

where f1 the area of DA in δ–x plane at a fixed vertical
offset y = 1μm, f2 inverse of a sum of the squared tune-
shift-with-amplitude terms, gp,i and gn,i the constraints for
DA at positive and negative x axis, xp,i and xn,i DA pos-
itive and negative boundary of x at δi, Ax,p and Ax,n the
positive and negative boundary of constraint rectangle for
x (see bottom plot of Fig. 2). In our applications, the sec-
ond approach in Eq. 2 is more fast in tracking and conver-
gence, and will be discussed in the following.

INDEPENDENT VARIABLES
The independent variables for DA optimization are

mainly sextupoles. There are six in the non-dispersive
straight sections and three in the dispersive regions between
dipoles. In our applications, the chromaticities are fixed
and two sextupoles in-between dipoles are used for this
purpose. The third sextupole in this dispersive region is
a knob for the higher order chromaticities.

Figure 3: Beta function variation resulting from tunes
change from (33.15, 16.27) to (33.16, 16.23). Changes in
short and long straight are independent, and the damping
wiggler section is not changed. In each DBA cell, linear
lattice between dipoles is not changed.

The tunes are also allowed to change in certain range in
the optimization by varying the quadrupoles. Given the ex-
ample lattice with tunes (33.15, 16.27), three quadrupoles,
at each side of the straigh t section (QH1, QH2, QH3 at
the high beta region and
region), are used to change the working point and keep
the twiss function between dipoles fixed. As shown in
Fig. 3, the twiss functions in non-dispersive regions do not
change as we move working point from (33.15, 16.27) to
(33.16, 16.23). The beta functions of the 2nd, 7th and 12th
long straight sections where damping wigglers sit did not
change either.

OPTIMIZATION AND RESULTS

The optimizations are carried out on about 180 2.33 GHz
Xeon CPUs of a Sun Grid Engine (SGE) cluster and the
underlying tracking of DA in our optimization uses a sym-
plectic tracking code called [9]. It applies multi-
particle tracking to speed up DA searching and paralleliza-
tion of MOEA to speed up the optimizer.

The DA is tune dependent, but with the method of mini-
mizing driving terms, we can not include tune as a variable.
Because each of the driving terms is tune and beta functions
dependent, there is no meaning to comparing the absolute
values of a single driving term of different tunes or lattices.

QL1,  QL2,QL3 at the low beta

 TESLA
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DA from Direct tracking can overcome this problem and
explore in a wider range of working points.

Figure 4: The tune variation range when matching long
and short straight sections independently. The blue dots
are initial tune coverage of the first generation. The green
circles are from the final population, and red triangles are
optimal candidates. All lattice are at chromaticity (5, 5).

Fig. 4 shows the tune range of an optimization. The
blue dots are the initial tunes from perturbations of lattice
with tunes (33.15, 16.27). As the quadrupole strength are
perturbed uniformly, the tunes distribution covers a regular
range bounded by integer and half integer. As the optimiza-
tion proceeds, the final population has tunes distributed as
green circles (νy ∈ [16.15, 16.40]). Because of the high
chromaticity, (5, 5), particles with δ = −2.5% will gain
−0.13 tune shift and particles with δ = −2.5% in a lattice
with tunes below 0.13 will hit integer resonance. Similar
argument holds for δ = 2.5% and fractional tunes above
0.37. This makes the converged solutions have fractional
tunes in-between [0.15, 0.35] (see Fig. 4. Depending on
the second order chromaticity, the exact number varies for
different lattices).

A post processing script is applied on the results of the
MOEA optimizer, e.g. the green circles in Fig. 4. It runs the
sextupole and quadrupole settings on more random seeds of
misalignment errors to filter out the candidates which have
visible dependence on random seeds.

The frequency map of one solution is shown in Fig. 5.
It is for x–δ plane with fixed vertical offset y = 1μm and
uses the common definition of tunes diffusion rate

dν/dt = log
√

(dνx/dt)2 + (dνy/dt)2 (3)

where dνx/dt = (νx,1025→2048 − νx,1→1024)/1024 and
dνy/dt = (νy,1025→2048−νy,1→1024)/1024 are tunes drift
per turn after 1024 turns. For high precision of frequency
drift, e.g. 10−7, NAFF is used on 1024 turns of orbit [10].

The solution shown in Fig. 5 has a working point
(33.24, 16.36). Compared with tunes (33.15, 16.27) opti-
mized at lower chromaticities, the new working point stays

Figure 5: Frequency map and tune footprint of a candi-
date lattice with tunes (33.24, 16.36) and fitted chromatic-
ity (5, 5).

further away from the main resonance at chromaticities
(5, 5). This broader range of searching is an advantage of
including tunes as variables.
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