Action and Phase Jump Analysis for LHC Orbits

Eng. Oscar Blanco
Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL
Physics Department

March 29, 2011
Action and phase
The method
Requirements

The LHC in simulations
Lattice model
Error Simulations

The LHC experimental orbits
Data
IR3

Conclusions
Action and Phase

\[z(s) = \sqrt{2J_z\beta_z(s)} \sin(\psi_z(s) - \delta_z) \]

(1)

When a magnetic error \(\theta_z \) is present at \(s = s_\theta \), the trajectory of the particle can be described independently before and after the error:

- **Before the error \(s < s_\theta \)**
 \[z(s) = \sqrt{2J_0\beta_z(s)} \sin(\psi_z(s) - \delta_0) \]
 (2)

- **After the error \(s > s_\theta \)**
 \[z(s) = \sqrt{2J_1\beta_z(s)} \sin(\psi_z(s) - \delta_1) \]
 (3)

\(J_0 \) and \(\delta_0 \) are the action and phase before the error,
\(J_1 \) and \(\delta_1 \) correspond to the action and phase after the error.
With this equations, using the Courant–Snyder parameters to propagate the particle trajectory through the error (and after some algebra and trigonometric identities...)

We obtain the **KICK magnitude** as

\[
\theta_z = \sqrt{\frac{2J_1 + 2J_0 - 4\sqrt{J_1J_0} \cos(\delta_1 - \delta_0)}{\beta(s_\theta)}}
\]

(4)
The kick \(\theta_z \) could be generated by any the multiple components in the magnetic field multipole expansion.

\[
\theta_x = B_0 - B_1 x(s_\theta) + A_1 y(s_\theta) + 2A_2 x(s_\theta) y(s_\theta) + B_2 [-x^2(s_\theta) + y^2(s_\theta)] + \cdots \tag{5}
\]

\[
\theta_y = A_0 + A_1 x(s_\theta) + B_1 y(s_\theta) + 2B_2 x(s_\theta) y(s_\theta) + A_2 [x^2(s_\theta) - y^2(s_\theta)] + \cdots \tag{6}
\]

with \(A_n = B' l a_n / B_\rho \) and \(B_n = B' l b_n / B_\rho \)
Linear errors

For **dipolar errors**, no dependence with any of the transverse coordinates is expected.

\[B_0 = \theta_z \quad (7) \]

For **quadrupolar errors**, linear dependency with the transverse coordinates is expected.

\[
A_1 = \frac{\theta_y y(s_\theta) + \theta_x x(s_\theta)}{x^2(s_\theta) + y^2(s_\theta)} \quad (8)
\]

\[
B_1 = \frac{\theta_y y(s_\theta) - \theta_x x(s_\theta)}{x^2(s_\theta) + y^2(s_\theta)} \quad (9)
\]
Requirements

- BPMs readings
 - Two before the error (to calculate \((J_0, \delta_0)\))
 - Two after the error (to calculate \((J_1, \delta_1)\))
- The lattice model
 - To obtain the Courant–Snyder parameters of the accelerator
- Multiturn runs
 - To increase the precision in the polynomial fitting (quadrupolar and sextupolar errors mainly), it is better if the multiturn run is made with high oscillations
The LHC

Images taken from [1] and [5]
Dipolar and quadrupolar errors were included in the accelerator.

Orbits with the errors were obtained by simulations

- MAD-X V4.01
 - Experiments off
 - Period lhcb1
 - Lattice model V6.5
 - Energy 450[GeV] (injection)
 - Particle PROTON
Action and Phase Jump Analysis for LHC Orbits

The LHC in simulations

The LHC experimental orbits

Conclusions

Ending
Including noise

\[\text{slope} = 1.0001 \times 10^{-3} \text{ (±0.01\%)} \]

\[\text{slope} = 0.9977 \times 10^{-3} \text{ (±1.53\%)} \]

\[\text{noise}_{\text{aver}} = 10^{-5} \text{[m]} \]

Eng. Oscar Blanco Ph.D. Javier Cardona
Universidad Nacional de Colombia, UNAL Physics Department
Action and Phase Jump Analysis for LHC Orbits
Phase range selection

Phase average is calculated per orbit, then orbits with similar phase have approximately same behaviour.
Analysing IR3
s coordinate selection
Error

BPM (s=3575.272716[m])

- **slope = 0.915 \times 10^{-3} (6.09\%)**
Conclusions

- Simulations show that LHC linear magnetic errors could be recovered within 1.53%.
- Extension to sextupolar error has not been possible with this run.
- Local error in IR3 has been identified.
- Still some noise in the plots from the multiturn data. Noise could be reduced with data from multiple bunches.
- IRs can be analysed independently.
- Phase should be a continuum function (it might affect averages).
Acknowledgements

The authors want to thank Rogelio Tomás García and his team at CERN for providing the LHC data, interesting discussions and suggestions for the analysis presented here.
Funding Agencies

- Departamento Administrativo de Ciencia, Tecnologia e Innovacion (COLCIENCIAS), Programa Jovenes Investigadores e Innovadores ”Virginia Gutierrez de Pineda” 2009
- Direccion de Investigacion Sede Bogota, Universidad Nacional de Colombia (DIB, UNAL)
References

- Large Hadron Collider.

- Cardona J. et. al., Linear and non linear magnetic error measurements using action and phase jump analysis. PRST-AB 2009.

- Schmidt F., MAD-X User’s guide.
 http://mad.web.cern.ch/mad/

- Schmidt F., A MAD-X primer.
 http://mad.web.cern.ch/mad/

- Design reports, beam parameters, lattice and optics from
 http://lhc.web.cern.ch/lhc/
<table>
<thead>
<tr>
<th>Action and phase</th>
<th>The LHC in simulations</th>
<th>The LHC experimental orbits</th>
<th>Conclusions</th>
<th>Ending</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thank you.
Contact List

- Universidad Nacional de Colombia
 http://www.unal.edu.co
- Science Faculty (UNAL)
 http://www.ciencias.unal.edu.co
- Physics Department (UNAL)
 http://www.fisica.unal.edu.co
- Accelerator Physics Group (UNAL)
 http://www.fisicaaceleradores.unal.edu.co
- COLCIENCIAS
 http://www.colciencias.gov.co
- DIB (UNAL)
 http://www.dib.unal.edu.co
Coordinate system

The coordinate system is the usual \((x, y, s)\), used for periodic accelerators.
LHC lattice model
LHC lattice model

- LHC lattice model V6.5 (for MAD-X)
 - Monitors (BPMs), to extract simulated orbits
 - Sextupole correctors on arcs are turned off
 - All elements are used to extract β and ψ functions
Action and Phase Jump Analysis for LHC Orbits

Eng. Oscar Blanco Ph.D. Javier Cardona
Universidad Nacional de Colombia, UNAL Physics Department

The LHC in simulations
The LHC experimental orbits
Conclusions
Ending
BPMs averages
Phase range selection