Action and phase	The LHC in simulations	The LHC experimental orbits	Conclusions	Ending

Action and Phase Jump Analysis for LHC Orbits

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

March 29, 2011

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase	The LHC in simulations	The LHC experimental orbits	Conclusions	Ending
	000	000		

Action and phase

The method Requirements

The LHC in simulations

Lattice model Error Simulations

The LHC experimental orbits Data IR3

Conclusions

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase ●000 ○	The LHC in simulations 0 000	The LHC experimental orbits 0 000	Conclusions	
The method				

Action and Phase

$$z(s) = \sqrt{2J_z\beta_z(s)}\sin(\psi_z(s) - \delta_z)$$
(1)

When a magnetic error θ_z is present at $s = s_{\theta}$, the trajectory of the particle can be described independently before and after the error:

• Before the error $(s < s_{\theta})$

$$z(s) = \sqrt{2J_0\beta_z(s)}\sin(\psi_z(s) - \delta_0)$$
(2)

• After the error $(s > s_{\theta})$

$$z(s) = \sqrt{2J_1\beta_z(s)}\sin(\psi_z(s) - \delta_1)$$
(3)

 J_0 and δ_0 are the action and phase before de error J_1 and δ_1 correspond to the action and phase after the error.

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase ○●○○ ○	The LHC in simulations 0 000	The LHC experimental orbits 0 000	Conclusions	
The method				

With this equations, using the Courant–Snyder parameters to propagate the particle trajectory through the error (and after some algebra and trigonometric identities...)

We obtain the KICK magnitude as

$$\theta_z = \sqrt{\frac{2J_1 + 2J_0 - 4\sqrt{J_1J_0}\cos(\delta_1 - \delta_0)}{\beta(s_\theta)}} \tag{4}$$

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase ○ ○	The LHC in simulations 0 000	The LHC experimental orbits 0 000	Conclusions	
The method				

The kick θ_z could be generated by any the multiple components in the magnetic field multipole expansion.

$$\theta_{x} = B_{0} - B_{1}x(s_{\theta}) + A_{1}y(s_{\theta}) + 2A_{2}x(s_{\theta})y(s_{\theta}) + B_{2}[-x^{2}(s_{\theta}) + y^{2}(s_{\theta})] + \cdots$$
(5)
$$\theta_{y} = A_{0} + A_{1}x(s_{\theta}) + B_{1}y(s_{\theta}) + 2B_{2}x(s_{\theta})y(s_{\theta}) + A_{2}[x^{2}(s_{\theta}) - y^{2}(s_{\theta})] + \cdots$$
(6)

with $A_n = B' Ia_n / B\rho$ and $B_n = B' Ib_n / B\rho$

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase	The LHC in simulations o 000	The LHC experimental orbits o ooo	Conclusions	
The method				

Linear errors

For **dipolar errors**, no dependence with any of the transverse coordinates is expected.

$$\mathsf{B}_0 = \theta_z \tag{7}$$

For **quadrupolar errors**, linear dependency with the transverse coordinates is expected.

$$A_{1} = \frac{\theta_{x}y(s_{\theta}) + \theta_{y}x(s_{\theta})}{x^{2}(s_{\theta}) + y^{2}(s_{\theta})}$$

$$B_{1} = \frac{\theta_{y}y(s_{\theta}) - \theta_{x}x(s_{\theta})}{x^{2}(s_{\theta}) + y^{2}(s_{\theta})}$$
(8)
(9)

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase	The LHC in simulations o ooo	The LHC experimental orbits o ooo	Conclusions	
Requirements				

Requirements

- BPMs readings
 - Two before the error (to calculate (J_0, δ_0))
 - Two after the error (to calculate (J_1, δ_1))
- The lattice model
 - ► To obtain the Courant–Snyder parameters of the accelerator
- Multiturn runs
 - To increase the precision in the polinomial fitting (quadrupolar and sextupolar errors mainly), it is better if the multiturn run is made with high oscilations

Action and phase	The LHC in simulations	The LHC experimental orbits	Conclusions	
Lattice model				

The LHC

Images taken from [1] and [5]

Eng. Oscar Blanco Ph.D. Javier Cardona

Action and phase 0000 0	The LHC in simulations ○ ●○○	The LHC experimental orbits 0 000	Conclusions	
Error Simulations				

Error simulations

Dipolar and quadrupolar errors were included in the accelerator.

Orbits with the errors were obtained by simulations

- MAD-X V4.01
 - Experiments off
 - Period lhcb1
 - Lattice model V6.5
 - Energy 450[GeV] (injection)
 - Particle PROTON

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase	The LHC in simulations	The LHC experimental orbits	Conclusions	Ending
	000			
Error Simulations				

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase 0000 0	The LHC in simulations ○ ○○●	The LHC experimental orbits 0 000	Conclusions	
Error Simulations				

Including noise

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase 0000 0	The LHC in simulations 0 000	The LHC experimental orbits \circ	Conclusions	
Data				

Phase range selection

Phase average is calculated per orbit, then orbits with similar phase have aproximatelly same behaviour.

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase	The LHC in simulations	The LHC experimental orbits	Conclusions	Ending
0000	0	0		
	000	000		
IR3				

Analysing IR3

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase 0000 0	The LHC in simulations 0 000	The LHC experimental orbits ○ ○●○	Conclusions	
IR3				

s coordinate selection

Eng. Oscar Blanco Ph.D. Javier Cardona

Action and phase	The LHC in simulations	The LHC experimental orbits	Conclusions	Ending
0000				
		000		
IR3				
IR3				

Error

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

P

Action and phase 0000 0	The LHC in simulations 0 000	The LHC experimental orbits 0 000	Conclusions	

Conclusions

- Simulations show that LHC linear magnetic errors could be recovered withing 1.53%
- Extension to sextupolar error has not been possible with this run
- Local error in IR3 has been identified
- Still some noise in the plots from the multiturn data. Noise could be reduced with data from multiple bunches
- ► IRs can be analysed independently
- Phase should be a continuum function (it might affect averages).

→ < ∃ →</p>

Action and phase 0000 0	The LHC in simulations o 000	The LHC experimental orbits o ooo	Conclusions	Ending

Acknowledgements

The authors want to thank Rogelio Tomás García and his team at CERN for providing the LHC data, interesting discussions and suggestions for the analysis presented here.

Action and phase 0000 0	The LHC in simulations o 000	The LHC experimental orbits o ooo	Conclusions	Ending

Funding Agencies

- Departamento Administrativo de Ciencia, Tecnologia e Innovacion (COLCIENCIAS), Programa Jovenes Investigadores e Innovadores "Virginia Gutierrez de Pineda" 2009
- Direccion de Investigacion Sede Bogota, Universidad Nacional de Colombia (DIB, UNAL)

Action and phase 0000 0	The LHC in simulations o ooo	The LHC experimental orbits o ooo	Conclusions	Ending

References

- Large Hadron Collider. http://en.wikipedia.org/wiki/File:LHC.svg
- Cardona J. et. al., Linear and non linear magnetic error measurements using action and phase jump analysis. PRST-AB 2009.
- Schmidt F., MAD-X User's guide. http://mad.web.cern.ch/mad/
- Schmidt F., A MAD-X primer. http://mad.web.cern.ch/mad/
- Design reports, beam parameters, lattice and optics from http://lhc.web.cern.ch/lhc/

Action and phase The LHC	in simulations The LHC experime	ental orbits Conclusions Endir	ig

Thank you.

Eng. Oscar Blanco Ph.D. Javier Cardona

・ロン ・回 と ・ ヨン ・ Universidad Nacional de Colombia, UNAL Physics Department

3

æ

Action and phase 0000 0	The LHC in simulations 0 000	The LHC experimental orbits 0 000	Conclusions	Ending

Contact List

- Universidad Nacional de Colombia http://www.unal.edu.co
- Science Faculty (UNAL) http://www.ciencias.unal.edu.co
- Physics Department (UNAL) http://www.fisica.unal.edu.co
- Accelerator Physics Group (UNAL) http://www.fisicaaceleradores.unal.edu.co
- COLCIENCIAS http://www.colciencias.gov.co
- DIB (UNAL) http://www.dib.unal.edu.co

Action and phase 0000 0	The LHC in simulations 0 000	The LHC experimental orbits 0 000	Conclusions	Ending

Coordinate system

The coordinate system is the usual (x, y, s), used for periodic accelerators

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase	The LHC in simulations	The LHC experimental orbits	Conclusions	Ending

LHC lattice model

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase	The LHC in simulations 0	The LHC experimental orbits 0	Conclusions	Ending

LHC lattice model

- LHC lattice model V6.5 (for MAD-X)
 - Monitors (BPMs), to extract simulated orbits
 - Sextupole correctors on arcs are turned off
 - \blacktriangleright All elements are used to extract β and ψ functions

Eng. Oscar Blanco Ph.D. Javier Cardona

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase	The LHC in simulations	The LHC experimental orbits	Conclusions	Ending

BPMs averages

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department

Action and phase	The LHC in simulations	The LHC experimental orbits	Conclusions	Ending
	000	000		

Phase range selection

Eng. Oscar Blanco Ph.D. Javier Cardona

Universidad Nacional de Colombia, UNAL Physics Department