Keyword: SRF
Paper Title Other Keywords Page
MOXA01 Commissioning and Restart of ESRF-EBS injection, lattice, storage-ring, MMI 1
 
  • S.M. White, N. Carmignani, L.R. Carver, J. Chavanne, L. Farvacque, L. Hardy, J. Jacob, G. Le Bec, S.M. Liuzzo, T.P. Perron, Q. Qin, P. Raimondi, J.-L. Revol, K.B. Scheidt
    ESRF, Grenoble, France
 
  The ESRF operates a 6 GeV 4th generation light source, the ESRF-EBS. This storage ring is the first to implement the Hybrid Multi-Bend Achromat lattice (HMBA). The HMBA lattice provides a reduction of the horizontal emittance of approximately a factor 30 with respect to the former Double Bend Achromat (DBA) structure, considerably improving the brilliance and transverse coherence of the ESRF accelerator complex while maintaining large horizontal acceptance and excellent lifetime performance. In this report, the characteristics of the HMBA lattice will be reviewed and the beam commissioning results and first operation experience of the new ESRF storage ring will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOXA01  
About • paper received ※ 11 May 2021       paper accepted ※ 21 August 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB021 A Dispersive Quadrupole Scan Technique for Transverse Beam Characterization quadrupole, emittance, optics, booster 107
 
  • J. Kallestrup, M. Aiba
    PSI, Villigen PSI, Switzerland
  • N. Carmignani, T.P. Perron
    ESRF, Grenoble, France
 
  Quadrupole scans are one of the standard techniques to characterize the transverse beam properties in transfer lines or linacs. However, in the presence of dispersion the usage of regular quadrupole scans will lead to erroneous estimates of the beam parameters. The standard solution to this problem is to measure the dispersion and then subtract it in the post-analysis of the quadrupole scan measurements assuming the design energy spread. Here we show that the dispersive contribution to the beam size can be included in the quadrupole scan procedure, forming a linear system of equations that can be solved to obtain both the betatronic and dispersive beam parameters. The method is tested at both the SLS and ESRF booster-to-ring transfer lines leading to reasonable estimates of the beam parameters.  
poster icon Poster MOPAB021 [0.447 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB021  
About • paper received ※ 19 May 2021       paper accepted ※ 02 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB051 Operation of the ESRF Booster with the New EBS Storage Ring emittance, booster, injection, operation 221
 
  • N. Carmignani, L.R. Carver, S.M. Liuzzo, T.P. Perron, S.M. White
    ESRF, Grenoble, France
 
  The Extremely Brilliant Source (EBS) has replaced the old ESRF Storage Ring (SR) during the 2019 one-year shutdown. The injector chain, composed of a Linac, a booster synchrotron, and two transfer lines, was not replaced. Nevertheless, some major hardware upgrades were anticipated prior to the long shutdown to ensure its long-term reliability. The shutdown interventions focused on reducing the machine circumference to cope with the new RF frequency of the SR. The status of the upgraded booster will be presented with a focus on the strategy used to lower horizontal emittance especially via emittance exchange.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB051  
About • paper received ※ 14 May 2021       paper accepted ※ 28 May 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB108 ESRF-EBS 352.37 MHz Radio Frequency System cavity, operation, MMI, HOM 395
 
  • J. Jacob, P.B. Borowiec, A. D’Elia, G. Gautier, V. Serrière
    ESRF, Grenoble, France
 
  The ESRF 352 MHz Radio Frequency (RF) system has been upgraded and tailored to the new 4th Generation Extremely Brilliant Source EBS, that was installed in 2019 and commissioned in 2020. The five former five-cell cavities were replaced with 13 single cell strongly HOM damped cavities that were developed in house, 10 of which are powered from existing 1 MW klystron transmitters. The remaining three cavities are individually fed by three 150 kW solid state amplifiers. All this required a reconstruction in record time of an elaborate WR2300 waveguide network. The low level RF system as well as the cavity and transmitter control system have been rebuilt. The RF design, commissioning and operation experience will be reported, including plans for a 4th harmonic RF system for bunch lengthening to further improve the performance of the new EBS ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB108  
About • paper received ※ 19 May 2021       paper accepted ※ 27 May 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB112 A Modified Hybrid 6BA Lattice for the HALF Storage Ring lattice, emittance, damping, storage-ring 407
 
  • Z.H. Bai, G.Y. Feng, T.L. He, W. Li, W.W. Li, G. Liu, Z.L. Ren, L. Wang, P.H. Yang, S.C. Zhang, T. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  In this paper, we propose a modified hybrid 6BA lattice as the baseline lattice of the Hefei Advanced Light Facility (HALF) storage ring. Similar to the Diamond-II lattice, the proposed lattice cell has one long straight section and one mid-straight section; but the two bend units adjacent to the mid-straight are LGB/RB units (LGB: longitudinal gradient bend, RB: reverse bend), which can give both lower emittance and shorter damping times. The designed HALF storage ring, with an energy of 2.2 GeV and 20 lattice cells, has a natural emittance of about 85 pm·rad.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB112  
About • paper received ※ 15 May 2021       paper accepted ※ 20 May 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB116 A Flexible Injection Scheme for the ESRF-EBS injection, kicker, septum, storage-ring 421
 
  • S.M. White, N. Carmignani, L.R. Carver, M. Dubrulle, L. Hoummi, S.M. Liuzzo, M. Morati, T.P. Perron
    ESRF, Grenoble, France
 
  The ESRF-EBS storage ring light source started commissioning in 2019 and successfully resumed users operation in 2020. Due to the smaller emittance and consequently reduced lifetime frequent injections are required that can potentially disturb beam lines experiments. In addition, operating the machine with low beta straight section and reduced insertion devices (ID) gaps are considered, therefore reducing the vertical aperture of the machine. Alternatives to the standard off-axis injection scheme allowing for efficient injection in reduced apertures with minimized perturbations are explored. A flexible layout for potential integration in the ESRF-EBS lattice is proposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB116  
About • paper received ※ 11 May 2021       paper accepted ※ 27 May 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB117 Single Bunch Collective Effects in the EBS Storage Ring impedance, simulation, synchrotron, vacuum 425
 
  • L.R. Carver, E. Buratin, N. Carmignani, F. Ewald, L. Hoummi, S.M. Liuzzo, T.P. Perron, B. Roche, S.M. White
    ESRF, Grenoble, France
 
  The ESRF storage ring (SR) has been dismantled and replaced by the Extremely Brilliant Source (EBS) which has now been commissioned. Beam based measurements have been performed to characterise the impedance of the new machine and to make a first comparison with predictions. The results from instability threshold scans and tune shift measurements will be presented, as well as bunch length and position variation with current and microwave threshold measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB117  
About • paper received ※ 11 May 2021       paper accepted ※ 31 May 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB224 Optimization and Error Studies for the USSR HMBA Lattice lattice, injection, booster, dynamic-aperture 730
 
  • L. Hoummi, N. Carmignani, L.R. Carver, S.M. Liuzzo, T.P. Perron, S.M. White
    ESRF, Grenoble, France
  • I.A. Ashanin, S.M. Polozov
    MEPhI, Moscow, Russia
  • T. Kulevoy
    ITEP, Moscow, Russia
  • T. Kulevoy
    NRC, Moscow, Russia
 
  Several new accelerator facilities will be built in Russia in the next few years. One of those facilities is a 6 GeV storage ring (SR) light source, the Ultimate Source of Synchrotron Radiation (USSR) to be built in Protvino, near Moscow. The Cremlin+ project aims to incorporate in this activity the best experience of European Accelerator Laboratories. The optimization of such optics including realistic errors and a commissioning-like sequence of corrections, using Multi-Objective Genetic Algorithms (NSGA-II) is presented. Several corrections schemes are also tested.  
poster icon Poster MOPAB224 [1.164 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB224  
About • paper received ※ 12 May 2021       paper accepted ※ 01 June 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB247 Multipacting Studies for the JAEA-ADS Five-Cell Elliptical Superconducting RF Cavities multipactoring, cavity, electron, simulation 793
 
  • B. Yee-Rendón, Y. Kondo, F.M. Maekawa, S.I. Meigo, J. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
  • E. Cicek
    KEK, Ibaraki, Japan
 
  The Five-cell Elliptical Superconducting Radio-Frequency Cavities (SRFC) provide the final acceleration in the JAEA-ADS linac (from 208 MeV to 1.5 GeV); thus, their performance is essential for the success of the JAEA-ADS project. After their optimization of the cavity geometry to achieve a high acceleration gradient with lower electromagnetic peaks, the next step in the R&D strategy is the accurate estimation of beam-cavity effects which can affect the performance of the cavities. To this end, multipacting studies were developed to investigate its effect in the cavity operation regimen and find countermeasures. The results of this study will help in the development of the SRFC models and in the consolidation of the JAEA-ADS project.  
poster icon Poster MOPAB247 [0.599 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB247  
About • paper received ※ 10 May 2021       paper accepted ※ 07 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB290 Machine Learning-Based LLRF and Resonance Control of Superconducting Cavities cavity, controls, LLRF, simulation 920
 
  • J.A. Diaz Cruz, S. Biedron, M. Martínez-Ramón
    UNM-ECE, Albuquerque, USA
  • J.A. Diaz Cruz
    SLAC, Menlo Park, California, USA
  • R. Pirayesh
    UNM-ME, Albuquerque, New Mexico, USA
  • S. Sosa
    ODU, Norfolk, Virginia, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under award number DE-SC0019468.
Superconducting radio frequency (SRF) cavities with high loaded quality factors that operate in continuous wave (CW) and low beam loading are sensitive to microphonics-induced detuning. Cavity detuning can result in an increase of operational power and/or in a cavity quench. Such SRF cavities have bandwidths on the order of 10 Hz and detuning requirements can be as tight as 10 Hz. Passive methods to mitigate vibration sources and their impact in the cryomodule/cavity environment are widely used. Active resonance control techniques that use stepper motors and piezoelectric actuators to tune the cavity resonance frequency by compensating for microphonics detuning have been investigated. These control techniques could be further improved by applying Machine Learning (ML), which has shown promising results in other particle accelerator control systems. In this paper, we describe a Low-level RF (LLRF) and resonance control system based on ML methods that optimally and adaptively tunes the control parameters. We present simulations and test results obtained using a low power test bench with a cavity emulator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB290  
About • paper received ※ 03 June 2021       paper accepted ※ 11 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB332 Design of 4th Harmonic RF Cavities for ESRF-EBS HOM, cavity, impedance, coupling 1031
 
  • A. D’Elia, J. Jacob, V. Serrière, X.W. Zhu
    ESRF, Grenoble, France
 
  Funding: European Union’s Horizon 2020 research and innovation program under grant #871072
An active 4th harmonic RF system for bunch lengthening is under study at the ESRF to improve the performance of the new EBS storage ring, mainly for few bunch operation with high currents per bunch, by reducing Touschek and intrabeam scattering, thereby increasing the lifetime and limiting the emittance growth. It will also reduce impedance heating of the vacuum chambers. The 4th Harmonic 1.41 GHz normal conducting cavity design takes inspiration from the KEK idea of using a TM020 mode exhibiting a reduced R/Q but a higher unloaded Q with respect to TM010. We propose to use multicell cavities for their compactness, the reduced number of required ancillaries and the ease of control for a reduced number of cavities. The drawback is the complexity of the model and the necessity to damp the lower order TM010 mode (LOM) as well as the higher order modes (HOM). The RF design of a 4th harmonic multicell damped cavity will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB332  
About • paper received ※ 19 May 2021       paper accepted ※ 17 August 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB333 ESRF-EBS 352 MHz HOM Damped RF Cavities cavity, impedance, HOM, MMI 1034
 
  • A. D’Elia, J. Jacob, V. Serrière
    ESRF, Grenoble, France
 
  For the new ESRF-EBS Storage Ring (SR), HOM damped RF cavities were needed to cope with the reduced thresholds for Longitudinal Coupled Bunch Instabilities (LCBI). The 352 MHz cavities were designed at the ESRF based on an improved version of the 500 MHz EU/ALBA/BESSY structures. A short description of the cavity design will be presented as well as an overview of the fabrication, the preparation and the performance of 13 such cavities for the ESRF-EBS SR. A study of the impedance of a whole cavity equipped with its ancillaries (HOM absorbers, ion pump and tuner) will be presented. One of the three HOM absorbers, the smaller one on top of the cavity, was finally not installed on the machine. The reasons and a detailed analysis in terms of HOM impedances that justifies this choice will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB333  
About • paper received ※ 19 May 2021       paper accepted ※ 07 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB347 High Power Coupler Conditioning for bERLinPro Energy Recovery Linac Injector booster, cavity, vacuum, MMI 1080
 
  • A. Neumann, W. Anders, F. Göbel, A. Heugel, S. Klauke, J. Knobloch, M. Schuster, Y. Tamashevich
    HZB, Berlin, Germany
 
  Funding: The work is funded by the Helmholtz-Association, BMBF, the state of Berlin and HZB.
Helmholtz Zentrum Berlin is currently finalizing the construction of the demonstrator Energy Recovery Linac bERLinPro *. The first part, which will be commissioned, will be the injector consisting of a superconducting RF (SRF) photo-injector (Gun) and a Booster module made up of three two cell SRF cavities. For the latter the 2.3 MeV beam from the gun needs to be accelerated to 6.5 MeV, whereas one Booster cavity will be operated in zero-crossing mode for bunch-shortening. Thus, for the final stage with a 100 mA beam, the twin power couplers of the Booster cavity need to deliver up to 120 kW in travelling continous wave (CW) mode at 1.3 GHz each. To achieve that, a dedicated coupler conditioning setup was installed and commissioned. Here, we will present the first conditioning results with the bERLinPro Booster fundamental power couplers in pulsed and CW regime.
* M. Abo-Bakr et al., in Proc. 9th Int. Particle Accelerator Conf. (IPAC’18), Vancouver, BC, Canada, Apr. 4,, pp. 4127-4130, doi:10.18429/JACoW-IPAC2018-THPMF034
 
poster icon Poster MOPAB347 [3.256 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB347  
About • paper received ※ 18 May 2021       paper accepted ※ 08 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB359 Operational Experience and Redesign of the Tuner without Spring Fingers for the LEReC Warm Cavity cavity, operation, vacuum, electron 1116
 
  • B.P. Xiao, J.M. Brennan, J.C. Brutus, K. Mernick, S. Polizzo, S.K. Seberg, F. Severino, K.S. Smith, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
A folded coaxial tuner without spring fingers was designed for the Low Energy RHIC electron Cooler (LEReC) 2.1 GHz warm cavity. During RHIC run 2019, this tuner was found to cause cavity trips via different failure modes. After analyzing these failure modes, a new straight coaxial tuner without spring fingers was proposed and was installed. We show the operational experience of the new tuner in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB359  
About • paper received ※ 17 May 2021       paper accepted ※ 25 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB376 Design and Fabrication of a Quadrupole Resonator for SRF R&D cavity, quadrupole, niobium, radio-frequency 1158
 
  • R. Monroy-Villa, W. Hillert, M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • S. Gorgi Zadeh, P. Putek
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
  • R. Monroy-Villa, D. Reschke, J.H. Thie
    DESY, Hamburg, Germany
 
  As Nb superconducting radio-frequency (SRF) cavities are now approaching the theoretical limits of the material, a variety of different surface treatments have been developed to further improve their performance; although no fully understood theory is yet available. Small superconducting samples are studied to characterize their material properties and their evolution under different surface treatments. To study the RF properties of such samples under realistic SRF conditions at low temperatures, a test cavity called quadrupole resonator (QPR) is currently being fabricated. In this work we report the status of the QPR at Universität Hamburg in collaboration with DESY. Our device is based on the QPRs operated at CERN and at HZB and its design will allow for testing samples under cavity-like conditions, i.e., at temperatures between 2K and 8 K, under magnetic fields up to 120mT and with operating frequencies of 433 MHz, 866 MHz and 1300 MHz. Fabrication tolerance studies on the electromagnetic field distributions and simulations of the static detuning of the device, together with a status report on the current manufacturing process, will be presented.  
poster icon Poster MOPAB376 [1.119 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB376  
About • paper received ※ 26 May 2021       paper accepted ※ 09 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB383 Pressure Test for Large Grain and Fine Grain Niobium Cavities cavity, niobium, experiment, FEM 1173
 
  • M. Yamanaka, T. Dohmae, H. Inoue, T. Saeki, K. Umemori, Y. Watanabe, K. Yoshida
    KEK, Ibaraki, Japan
  • K. Enami
    Tsukuba University, Ibaraki, Japan
 
  The pressure test was performed using a fine grain (FG) and a large grain (LG) niobium cavities. The cavity is 1.3 GHz 3-cell TESLA-like shape. The cavity was housed in a steel vessel. Water is supplied into the vessel and the cavity outside is pressurized. The applying pressure and the natural frequency of cavity were measured during the pressure test. The FG and LG cavities were deformed greatly and the pressure dropped suddenly at 3.4 MPa and 1.6 MPa, respectively. The frequency shifted up to 3.4 MHz and 1.3 MHz, respectively. There was no leak after the pressure test, so the cavity did not rupture under above pressure. The result of the pressure at LG cavity is less half than that of the FG cavity. We calculated the stress distribution in the structure by applying outer water pressure using a FEM. The maximum stress at cell when above test pressure is applied, are 146 MPa in FG and 73 MPa in LG, respectively. These stresses are similar to tensile strength of niobium specimen measure by ourselves. The result of pressure tests agrees well with the calculation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB383  
About • paper received ※ 19 May 2021       paper accepted ※ 22 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB384 Nb3Sn Coating of Twin Axis Cavity for Accelerator Applications cavity, linac, niobium, dipole 1175
 
  • J.K. Tiskumara, S.U. De Silva, J.R. Delayen, H. Park
    ODU, Norfolk, Virginia, USA
  • J.R. Delayen, H. Park, U. Pudasaini, C.E. Reece
    JLab, Newport News, Virginia, USA
  • G.V. Eremeev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Research supported by DOE Office of Science Accelerator Stewardship Program Award DE- SC0019399. Partially authored by Jefferson Science Associates under contract no. DEAC0506OR23177
A Superconducting twin axis cavity consisting of two identical beam pipes that can accelerate and decelerate beams within the same structure has been proposed for the Energy Recovery Linac (ERL) applications. There are two niobium twin axis cavities at JLab fabricated with the intention of later Nb3Sn coating and now we are progressing to coat them using vapor diffusion method. Nb3Sn is a potential alternate material for replacing Nb in SRF cavities for better performance and reducing operational costs. Because of advanced geometry, larger surface area, increased number of ports and hard to reach areas of the twin axis cavities, the usual coating approach developed for typical elliptical single-axis cavities must be evaluated and requires to be adjusted. In this contribution, we report the first results from the coating of a twin axis cavity and discuss current challenges with an outlook for the future.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB384  
About • paper received ※ 19 May 2021       paper accepted ※ 24 May 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB385 An Overview of RF Systems for the EIC cavity, electron, HOM, luminosity 1179
 
  • R.A. Rimmer, J.P. Preble
    JLab, Newport News, Virginia, USA
  • K.S. Smith, A. Zaltsman
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under DOE Contract No. DE-SC0012704, by Jefferson Science Associates under contract DE-SC0002769, and by SLAC under Contract No. DE-AC02-76SF00515.
The Electron Ion Collider (EIC) to be constructed at Brookhaven National Laboratory in the USA will be a complex system of accelerators providing high luminosity, high polarization, variable center of mass energy collisions between electrons and protons or ions. To achieve this a variety of RF systems are required. They must provide for capture, formation and storage of Ampere-class beams in the electron and hadron storage rings (ESR and HSR), fast acceleration of high-charge polarized electron bunches in the rapid cycling synchrotron (RCS), provision of cold high current electron bunches in the high-energy cooler ERL and precise high-gradient crabbing of electrons and hadrons either side of the interaction point. The challenges include strong HOM damping in the storage ring cavities and cooler ERL, very high fundamental mode power in the ESR and cooler injector, extremely stable low-noise operation of the crab cavities, mitigation of transient beam loading from gaps, and operating over a wide range of energies and beam currents. We describe the high-level system parameters and principal design choices made and progress on the R&D plan to develop these state of the art systems.
 
poster icon Poster MOPAB385 [1.268 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB385  
About • paper received ※ 18 May 2021       paper accepted ※ 31 May 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB386 Development of Nitrogen-Doping Technology for SHINE cavity, niobium, ECR, linac 1182
 
  • Y. Zong, X. Huang, Z. Wang
    SINAP, Shanghai, People’s Republic of China
  • J.F. Chen, H.T. Hou, D. Wang, J.N. Wu, Y.X. Zhang
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • P.C. Dong
    Shanghai Advanced Research Institute, Pudong, Shanghai, People’s Republic of China
  • Y.W. Huang
    ShanghaiTech University, Shanghai, People’s Republic of China
  • J. Rong
    SSRF, Shanghai, People’s Republic of China
 
  The Shanghai HIgh repetition rate XFEL aNd Extreme light facility (SHINE) is under construction, which needs six hundred 1.3GHz cavities with high quality factor. In this paper, we present the newest studies on single cell cavities with nitrogen doping and cold EP treatment, showing an obvious improvement compared with the previous results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB386  
About • paper received ※ 21 May 2021       paper accepted ※ 08 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB388 Status of the High Power Couplers for ESS Elliptical Cavities cavity, cryomodule, simulation, vacuum 1186
 
  • C. Arcambal, P. Bosland, G. Devanz, T. Hamelin, C. Madec, C. Marchand, M. Oublaid, G. Perreu, C. Servouin, C. Simon
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Baudrier, C. Mayri, S. Regnaud, T.V. Vacher
    CEA-DRF-IRFU, France
 
  In the framework of the European Spallation Source (ESS), CEA Paris-Saclay is responsible for the delivery of 30 cryomodules (9 medium beta (β = 0.67) and 21 high beta (β = 0.86) ones). Each cryomodule contains 4 elliptical cavities equipped with a radio frequency power coupler. The ESS nominal pulse is 1.1 MW maximum peak power over a width of 3.6 ms at a repetition rate of 14 Hz. The design of the couplers for medium beta and for high beta cavities is the same, except a small difference of the antenna penetration to adjust the Qext. The mass production of the 120 couplers started and all the medium beta couplers have been conditioned at room temperature. The first cryomodules equipped with the power couplers were successfully tested at high RF power and with cavities at 2K reaching the ESS nominal pulse. The main issue at the start of the series production could be fixed and it was due to bad TiN coatings that caused abnormal dielectric losses in the window. Thus, this paper deals with the TiN coating defect, presents the conditioning procedure and gives a conditioning report of these 36 couplers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB388  
About • paper received ※ 19 May 2021       paper accepted ※ 24 May 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB391 Conduction Cooling Methods for Nb3Sn SRF Cavities and Cryomodules cavity, controls, accelerating-gradient, simulation 1192
 
  • N.A. Stilin, A.T. Holic, M. Liepe, R.D. Porter, J. Sears, Z. Sun
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Rapid progress in the performance of Nb3Sn SRF cavities during the last few years has made Nb3Sn an energy efficient alternative to traditional Nb cavities, thereby initiating a fundamental shift in SRF technology. These Nb3Sn cavities can operate at significantly higher temperatures than Nb cavities while simultaneously requiring less cooling power. This critical property enables the use of new, robust, turn-key style cryogenic cooling schemes based on conduction cooling with commercial cryocoolers. Cornell University has developed and tested a 2.6 GHz Nb3Sn cavity assembly which utilizes such cooling methods. These tests have demonstrated stable RF operation at 10 MV/m and the measured thermal dynamics match what is found in numerical simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB391  
About • paper received ※ 20 May 2021       paper accepted ※ 10 June 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB394 Preliminary BCP Flow Field Investigation by CFD Simulations and PIV in a Transparent Model of a SRF Elliptical Low Beta Cavity cavity, experiment, simulation, laser 1204
 
  • A. D’Ambros, M. Bertucci, A. Bosotti, A.T. Grimaldi, P. Michelato, L. Monaco, R. Paparella, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • F. Cozzi, G. Pianello
    Politecnico di Milano, Milano, Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  Standard vertical Buffered Chemical Polishing (BCP) is one of the main surface treatment for Superconducting Radiofrequency (SRF) cavities. A finite element Computational Fluid Dynamic (CFD) model has been developed. Uncertainties in the solution of fluid simulations are not negligible due to the complex geometry of a SRF cavity; thus without an experimental validation, results from this type of simulations cannot be confidently used to improve the process. To this aim, an experimental study was started to investigate the fluid dynamics of the BCP process by means of Particle Image Velocimetry (PIV) technique. Similitude on Reynolds number and Refractive Index Matching (RIM) technique were also implemented to replace the dangerous BCP mixture with a glycerine-water mixture. The paper describes the preliminary results from simulations and experiment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB394  
About • paper received ※ 19 May 2021       paper accepted ※ 24 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB396 Measurements of Magnetic Field Penetration in Superconducting Materials for SRF Cavities cavity, experiment, solenoid, accelerating-gradient 1208
 
  • I.H. Senevirathne, J.R. Delayen, A.V. Gurevich
    ODU, Norfolk, Virginia, USA
  • J.R. Delayen, A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  Funding: This work is supported by NSF Grants PHY-1734075 and PHY-1416051, and DOE Award DE-SC0010081 and DE-SC0019399
Superconducting radiofrequency (SRF) cavities used in particle accelerators operate in the Meissner state. To achieve high accelerating gradients, the cavity material should stay in the Meissner state under high RF magnetic field without penetration of vortices through the cavity wall. The field onset of flux penetration into a superconductor is an important parameter of merit of alternative superconducting materials other than Nb which can enhance the performance of SRF cavities. There is a need for a simple and efficient technique to measure the onset of field penetration into a superconductor directly. We have developed a Hall probe experimental setup for the measurement of the flux penetration field through a superconducting sample placed under a small superconducting solenoid magnet which can generate magnetic fields up to 500 mT. The system has been calibrated and used to measure different bulk and thin film superconducting materials. This system can also be used to study SIS multilayer coatings that have been proposed to enhance the vortex penetration field in Nb cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB396  
About • paper received ※ 19 May 2021       paper accepted ※ 23 June 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXC03 Ferro-Electric Fast Reactive Tuner Applications for SRF Cavities cavity, beam-loading, operation, controls 1305
 
  • N.C. Shipman, A. Castilla, M.R. Coly, F. Gerigk, A. Macpherson, N. Stapley, H. Timko
    CERN, Geneva, Switzerland
  • I. Ben-Zvi
    BNL, Upton, New York, USA
  • G. Burt, A. Castilla
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • C.-J. Jing, A. Kanareykin
    Euclid TechLabs, Solon, Ohio, USA
 
  A Ferro-Electric fast Reactive Tuner (FE-FRT) is a novel type of RF cavity tuner containing a low loss ferroelectric material. FE-FRTs have no moving parts and allow cavity frequencies to be changed extremely quickly (on the timescale of 100s of ns or less). They are of particular interest for SRF cavities as they can be placed outside the liquid helium environment and without an FE-FRT it’s typically very difficult to tune SRF cavities quickly. FE-FRTs can be used for a wide variety of use cases including microphonics suppression, RF switching, and transient beam loading compensation. This promises entirely new operational capabilities, increased performance and cost savings for a variety of existing and proposed accelerators. An overview of the theory and potential applications will be discussed in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUXC03  
About • paper received ※ 19 May 2021       paper accepted ※ 02 August 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB017 Study of Conduction-Cooled Superconducting Quadrupole Magnets Combined with Dipole Correctors for the ILC Main Linac quadrupole, dipole, linac, cavity 1375
 
  • Y. Arimoto, S. Michizono, Y. Morikawa, N. Ohuchi, T. Oki, H. Shimizu, K. Umemori, X. Wang, A. Yamamoto, Y. Yamamoto, Z.G. Zong
    KEK, Ibaraki, Japan
  • V.S. Kashikhin
    Fermilab, Batavia, Illinois, USA
 
  A superconducting rf (SRF) cryomodule for International Linear Collider(ILC) Main Linac equips focus/steering magnets. The magnets are "superferric" magnets with four superconducting (SC) race track coils conductively cooled from the cryomodule LHe supply pipe. The quadrupole field gradient and dipole field are 40 T/m and 0.1 T, respectively. The magnet length and iron-pole radius are 1 m and 0.045 m, respectively. It is known that dark current is generated at SRF cavities and accelerated through the following linac string. The dark current reaches and heats the SC magnets. It is estimated that the power deposition in the magnet may reach more than a few watts and temperature of the SC coils may locally reach to critical temperature of NbTi. It is important to make the magnet not reach quench with sufficient conduction cooling. We aim to realize the SC magnet which can stably operate under such condition. We plan to develop test coils made of three types of SC materials, NbTi, Nb3Sn, and MgB2 and study thermal characteristics and stability . We will develop a short model magnet, based on the test coil results. Here, we will present the magnet design study and the R&D plan.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB017  
About • paper received ※ 19 May 2021       paper accepted ※ 16 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB035 ESS Medium Beta Cavities Status at INFN LASA cavity, linac, multipactoring, controls 1420
 
  • D. Sertore, M. Bertucci, M. Bonezzi, A. Bosotti, A. D’Ambros, A.T. Grimaldi, P. Michelato, L. Monaco, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  INFN Milano contributes in-kind to the ESS ERIC Superconducting Linac supplying 36 cavities for the Medium Beta section of the proton accelerator. The production has reached completion, being all the cavities mechanical fabricated, BCP treated and, for most of them, also qualified with vertical test at cold. In this paper, we report on the results and lessons learnt and the actions taken both for quality control managing and recovery of the few cavities that did not reach the project goal after the first qualification test.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB035  
About • paper received ※ 19 May 2021       paper accepted ※ 14 June 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB048 HMBA Optics Correction Experience at ESRF optics, lattice, MMI, closed-orbit 1462
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, L. Farvacque, T.P. Perron, P. Raimondi, S.M. White
    ESRF, Grenoble, France
 
  The ESRF-EBS storage ring, successfully commissioned in 2020, operates the HMBA lattice, first proposed in * and then adopted in several recent upgrade programs. The successful and timely commissioning of the storage is in large part due to the excellent optics control achieved over that period. Design performance were obtained with lower than predicted correction strengths, localized for the most part in the vicinity of sextupoles. This remarkable behavior is not only the result of the corrective actions taken during the commissioning but also of the extremely accurate conception and alignment of the machine. This report summarizes the steps that lead to the present performances and discusses their stability over time.
* J.Biasci et al. Synchrotron Radiation News27, 8 (2014), https://doi.org/10.1080/08940886.2014.970931.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB048  
About • paper received ※ 10 May 2021       paper accepted ※ 11 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB049 USSR HMBA Storage Ring Lattice Options injection, emittance, lattice, optics 1466
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, J. Chavanne, L. Hoummi, J. Jacob, T.P. Perron, R. Versteegen, S.M. White
    ESRF, Grenoble, France
  • I.A. Ashanin, V.S. Dyubkov, S.M. Polozov
    MEPhI, Moscow, Russia
  • I.A. Ashanin, V.S. Dyubkov, T. Kulevoy, S.M. Polozov
    NRC, Moscow, Russia
  • T. Kulevoy
    ITEP, Moscow, Russia
 
  Funding: European Union’s Horizon 2020 research and innovation program under grant #871072 Russian federation resolution #287
Several new accelerator facilities will be built in Russia in a few years from now. One of those facilities is a 6GeV storage ring (SR) light source (USSR - Ultimate Source of Synchrotron Radiation) to be built in Protvino, near Moscow. The Cremlin+ project aims to incorporate in this activity the best experience of European Accelerator Laboratories. The design of the optics for this SR is presented here in two declinations leading to 70 pm-rad equilibrium horizontal emittance. The first is a 40 cells lattice, the second is the same but includes high field Short Bending magnet sources in each cell. Optics and high order multipole optimizations are performed to obtain sufficient lifetime and dynamic aperture for a conservative off-axis injection.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB049  
About • paper received ※ 12 May 2021       paper accepted ※ 11 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB098 Recent Progress Toward a Conduction-Cooled Superconducting Radiofrequency Electron Gun cavity, simulation, electron, accelerating-gradient 1604
 
  • O. Mohsen, N. Adams, V. Korampally, A. McKeown, D. Mihalcea, P. Piot, I. Salehinia, N. Tom
    Northern Illinois University, DeKalb, Illinois, USA
  • R. Dhuley, M.G. Geelhoed, D. Mihalcea, J.C.T. Thangaraj
    Fermilab, Batavia, Illinois, USA
  • P. Piot
    ANL, Lemont, Illinois, USA
 
  Funding: This work was supported by the US Department of Energy (DOE) under contract DE-SC0018367
High-repetition-rate electron sources have widespread applications. This contribution discusses the progress toward a proof-of-principle demonstration for a conduction-cooled electron source. The source consists of a simple modification of an elliptical cavity that enhances the field electric field at the photocathode surface. The source was cooled to cryogenic temperatures and preliminary measurements for the quality factor and accelerating field were performed. Additionally, we present future plans to improve the source along with simulated beam-dynamics performances.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB098  
About • paper received ※ 29 May 2021       paper accepted ※ 17 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB166 A New Design of a Dressed Balloon Cavity with Superior Mechanical Properties cavity, multipactoring, linac, software 1769
 
  • R.A. Kostin, C. Jing, S. Ross
    Euclid Beamlabs, Bolingbrook, USA
  • I.V. Gonin, T.N. Khabiboulline, G.V. Romanov, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • M.P. Kelly
    ANL, Lemont, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
 
  Funding: Work supported by the SBIR program of the U.S. Department of Energy, under grant DE-SC0020781
Superconducting spoke cavities are prone to multipactor - resonant raise of a number of electrons due to secondary emission. Recently proposed and tested by TRIUMF balloon-type spoke cavity showed an outstanding multipactor (MP) suppression property but unfortunately serious Q degradation at high fields. A new fully developed design of a dressed balloon cavity which can be used for any proton linac SSR2 section is developed. The design incorporates additional EP ports for high Q-factor demonstration. Superior properties are demonstrated, such as effective multipactor suppression, 40% lower Lorentz force coefficient, zero sensitivity to external pressure. This paper presents the results of coupled structural Multiphysics analysis, and engineering design of the dressed balloon cavity with EP ports.
 
poster icon Poster TUPAB166 [1.394 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB166  
About • paper received ※ 15 May 2021       paper accepted ※ 21 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB167 Status of Conduction Cooled SRF Photogun for UEM/UED gun, cavity, cryomodule, shielding 1773
 
  • R.A. Kostin, C. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • P.V. Avrakhov, A. Liu, Y. Zhao
    Euclid TechLabs, Solon, Ohio, USA
 
  Funding: DOE #DE-SC0018621
Benefiting from the rapid progress on RF photogun technologies in the past two decades, the development of MeV range ultrafast electron diffraction/microscopy (UED and UEM) has been identified as an enabling instrumentation. UEM or UED use low power electron beams with modest energies of a few MeV to study ultrafast phenomena in a variety of novel and exotic materials. SRF photoguns become a promising candidate to produce highly stable electrons for UEM/UED applications because of the ultrahigh shot-to-shot stability compared to room temperature RF photoguns. SRF technology was prohibitively expensive for industrial use until two recent advancements: Nb3Sn and conduction cooling. The use of Nb3Sn allows to operate SRF cavities at higher temperatures (4K) with low power dissipation which is within the reach of commercially available closed-cycle cryocoolers. Euclid is developing a continuous wave (CW), 1.5-cell, MeV-scale SRF conduction cooled photogun operating at 1.3 GHz. In this paper, the technical details of the design and first experimental data are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB167  
About • paper received ※ 29 May 2021       paper accepted ※ 21 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB211 The Accelerator System of IFMIF-DONES Multi-MW Facility linac, cavity, rfq, cryomodule 1910
 
  • I. Podadera, A. Ibarra, D. Jimenez-Rey, J. Mollá, C. Oliver, D. Regidor, R. Varela, C. de la Morena
    CIEMAT, Madrid, Spain
  • F. Arbeiter, V. Hauer
    KIT, Eggenstein-Leopoldshafen, Germany
  • N. Bazin, J. Dumas, L. Seguí
    CEA-IRFU, Gif-sur-Yvette, France
  • L. Bellan, E. Fagotti, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • N. Chauvin, S. Chel, J. Plouin
    CEA-DRF-IRFU, France
  • G. Duglue, H. Dzitko
    F4E, Germany
  • W.C. Grabowski, A. Wysocka-Rabin
    NCBJ, Świerk/Otwock, Poland
  • M. Jaksic, T. Tadic
    RBI, Zagreb, Croatia
  • W. Królas
    IFJ-PAN, Kraków, Poland
  • R. López, A. Muñoz, C. Prieto
    Empresarios Agrupados, Madrid, Spain
  • O. Nomen, M. Sanmartí, F.J. Saura Esteban, B.K. Singh, D. Sánchez-Herranz
    IREC, Sant Adria del Besos, Spain
 
  Funding: Work carried out within EUROfusion Consortium and DONES-PreP and received funding from the Euratom research and training programme 2014-2018 & 2019-2020 under grants agreement No. 633053 & 870186
The IFMIF-DONES (DEMO-Oriented Neutron Early Source) facility has passed the preliminary design phase and the detailed design phase is very much advanced. Next step will be the preparation phase for the construction of the facility. The DONES facility aims at developing a database of fusion-like radiation effects on materials to be used in future fusion reactors up to damage levels expected in the EU DEMO. It will be based on an intense neutron source created by an accelerated deuteron beam (125 mA CW, 40 MeV) impinging on a liquid lithium curtain. The DONES Accelerator Systems (AS) will be responsible of delivering this 5 MW D+ beam with very high availability. The beam acceleration will be performed by several stages: an ion source and LEBT, an RFQ, a MEBT, an SRF Linac and a HEBT transporting and delivering an optimized profile down to the target. A high power RF system and several ancillaries will ensure the equipment is properly operated. This contribution will report the present status of the AS design, the main challenges faced, the R&D programme to overcome them, and the prospects for the construction and commissioning of the DONES accelerator in Granada (Spain).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB211  
About • paper received ※ 19 May 2021       paper accepted ※ 17 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB302 Arrival Time Stabilization at Flash Using the Bunch Arrival Corrector Cavity (BACCA) cavity, electron, feedback, laser 2194
 
  • B. Lautenschlager, L. Butkowski, M.K. Czwalinna, B. Dursun, M. Hierholzer, S. Pfeiffer, H. Schlarb, Ch. Schmidt
    DESY, Hamburg, Germany
 
  For pump-probe and seeding experiments at free electron lasers, a femtosecond precise bunch arrival time stability is mandatory. To stabilize the arrival times a fast longitudinal intra bunch-train feedback (L-IBFB) using bunch arrival time monitors is applied. The electron bunch energy prior to a bunch compression chicane is modulated by superconducting radio frequency (SRF) cavities to compensate fast arrival time fluctuations of the subsequent bunches. A broadband normal conducting RF cavity was installed in front of the first bunch compression chicane at FLASH. The L-IBFB uses the normal conducting cavity for small but fast energy corrections together with the SRF cavities for larger and slower corrections. Current measurements show arrival time stabilities of the electron bunches towards 5 fs (rms) at the end of the linac, if the normal conducting cavity acts together with the SRF cavities in the L-IBFB system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB302  
About • paper received ※ 19 May 2021       paper accepted ※ 23 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB328 Machine Learning for Time Series Prediction of an Accelerator Beam to Recognize Equipment Malfunction cavity, linac, ion-source, neutron 2272
 
  • C.C. Peters
    ORNL RAD, Oak Ridge, Tennessee, USA
  • W. Blokland, D.L. Brown, F. Liu, C.D. Long, D. Lu, P. Ramuhalli, D.E. Womble, J. Zhang, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05- 00OR22725 for the U.S. Department of Energy.
The Spallation Neutron Source (SNS) is an accelerator based pulsed neutron source based on a 1 GeV pulsed proton Superconducting Radio Frequency (SRF) linear accelerator (linac). Since beginning high power beam operation in 2006 correlations have been found linking abrupt beam loss events to SRF cavity instabilities. With the planned upgrades to double the beam power we expect increased rates of degradation and the importance of minimizing these beam loss events will become ever more important. To further limit degradation, we are developing machine learning approaches to monitor the beam and to detect, predict and prevent beam loss events. Initial research has shown that precursors to beam loss events are detectable. The initial steps are to use ML-based classification to recognize anomalies and to use Long Short-Term Memory (LSTM) autoencoders to predict beam loss. In this paper, we describe recent progress in applying machine learning for recognizing anomalies and predicting beam loss and present initial results of our research using acquired data from different diagnostics and the Machine Protection System (MPS).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB328  
About • paper received ※ 23 May 2021       paper accepted ※ 28 May 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB333 Status of PIP-II 650 MHz Prototype Dressed Cavity Qualification cavity, cryomodule, status, superconductivity 2279
 
  • G.V. Eremeev, D.J. Bice, C. Boffo, S.K. Chandrasekaran, S. Cheban, F. Furuta, I.V. Gonin, C.J. Grimm, S. Kazakov, T.N. Khabiboulline, A. Lunin, M. Martinello, N. Nigam, J.P. Ozelis, Y.M. Pischalnikov, K.S. Premo, O.V. Prokofiev, O.V. Pronitchev, G.V. Romanov, N. Solyak, A.I. Sukhanov, G. Wu
    Fermilab, Batavia, Illinois, USA
  • M. Bagre, V. Jain, A. Puntambekar, S. Raghvendra, P. Shrivastava
    RRCAT, Indore (M.P.), India
  • P. Bhattacharyya, S. Ghosh, S. Seth
    VECC, Kolkata, India
  • R. Kumar
    BARC, Mumbai, India
  • J. Lewis, P.A. McIntosh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Pagani, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • T. Reid
    ANL, Lemont, Illinois, USA
  • A.D. Shabalina
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Low-beta and high-beta sections of PIP-II linac will use nine low-beta cryomodules with four cavities each and four high-beta cryomodules with six cavities each. These cavities will be produced and qualified in collaboration between Fermilab and the international partner labs. Prior to their installation into prototype cryomodules, several dressed cavities, which include jacketed cavities, high power couplers, and tuners, will be qualified in STC horizontal test bed at Fermilab. After qualification of bare β = 0.9 cavities at Fermilab, several pre-production β = 0.92 and β = 0.61 cavities have been and are being fabricated and qualified. Procurements have also been started for high power couplers and tuners. In this contribution we present the current status of prototype dressed cavity qualification for PIP-II.
 
poster icon Poster TUPAB333 [6.247 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB333  
About • paper received ※ 23 May 2021       paper accepted ※ 19 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB338 Surface Roughness Reduction of Nb3Sn Thin Films via Laser Annealing for Superconducting Radio-Frequency Cavities laser, cavity, superconductivity, HOM 2283
 
  • Z. Sun, M. Ge, M. Liepe, T.E. Oseroff, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • A.B. Connolly, M.O. Thompson
    Cornell University, Ithaca, USA
 
  Superconducting radio frequency (SRF) cavities, a key component of particle accelerators, await new SRF materials beyond the state-of-the-art niobium. Nb3Sn is one of the most competitive candidates, since it increases the superheating field, allows the operation temperature up to 4K, and improves cavity efficiency. Surface roughness and grain boundaries, however, significantly affect the RF performance of current Nb3Sn cavities. Here, we explore a post laser annealing technique to reduce the surface roughness. In doing so, we deposited a TiN laser-absorber on Nb3Sn and Nb surfaces, and then annealed the samples by laser scanning via different laser systems. The Nb3Sn surface roughness was minimized to 101 nm (Ra) by laser annealing via 308 nm, 35 ns pulses. Surface imaging and Fourier analysis revealed laser annealing is able to remove sharp edges and <1 um wavelength features.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB338  
About • paper received ※ 20 May 2021       paper accepted ※ 09 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB342 Preliminary Cryogenic Cold Test Results of the First 9-Cell LSF Shape Cavity cavity, niobium, multipactoring, laser 2296
 
  • R.L. Geng, W.A. Clemens, R.S. Williams
    JLab, Newport News, Virginia, USA
  • S.A. Belomestnykh
    Fermilab, Batavia, Illinois, USA
  • Y. Fuwa
    JAEA/J-PARC, Tokai-mura, Japan
  • H. Hayano
    KEK, Ibaraki, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • Z. Li
    SLAC, Menlo Park, California, USA
  • V.D. Shemelin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Supplemental support by US-Japan Collaboration on HEP.
Following successful prototyping and testing of single- & 5-cell LSF shape cavities *, **, the first 9-cell LSF shape cavity LSF9-1 was successfully constructed using an innovative process at JLab with the in-house facilities. The cavity was then shipped to KEK for post-fabrication mechanical adjustment and ILC TDR style treatment and surface processing. Cold testing was carried out at the JLab VTA facility, instrumented with a suite of Kyoto instruments. Favorable values for the bath pressure detuning sensitivity and Lorentz force detuning coefficient were experimentally measured, validating the design improvement in cell stiffeners. Pass-band measurements indicate 4 out of 9 cells reaching gradient capability of > 45 MV/m, including 2 cells reaching 51 MV/m. Cornell OST detectors identified the cell and location responsible for the current hard quench limit. Multipacting-like barriers observed in end cells are investigated both analytically and numerically. The cavity was shipped to FNAL and received a light EP at the joint ANL/FNAL facility for further cold testing at Jlab. Two new 9-cell LSF cavities are being constructed including one made of large-grain niobium material.
* R. L. Geng et al.,WEPWI013, IPAC15.
** R. L. Geng et al., MOP064, SRF’19.
 
poster icon Poster TUPAB342 [1.600 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB342  
About • paper received ※ 09 May 2021       paper accepted ※ 14 June 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB343 Final Design Studies for the VSR DEMO 1.5 GHz Coupler multipactoring, operation, cavity, electron 2300
 
  • E. Sharples-Milne, V. Dürr, P. Echevarria, J. Knobloch, A. Neumann, A.V. Vélez
    HZB, Berlin, Germany
 
  With the 1.5 GHz couplers for the Variable pulse length Storage Ring (VSR) DEMO now in the manufacturing stages, the studies that led to the final coupler design will be presented. The system specific constraints and design modifications that combat the challenges of thermomechanical stresses, higher order mode (HOM) propagation and dimensional constraints are explored. This includes S-Parameter analysis, an in-depth study of the coupling factor, and multipacting studies for the average (1.5 kW) and peak (16 kW) power.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB343  
About • paper received ※ 19 May 2021       paper accepted ※ 17 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB344 Evaluation of Anisotropic Magnetoresistive (AMR) Sensors for a Magnetic Field Scanning System for SRF Cavities cavity, experiment, niobium, MMI 2304
 
  • I.P. Parajuli, G. Ciovati, J.R. Delayen, A.V. Gurevich
    ODU, Norfolk, Virginia, USA
  • G. Ciovati, J.R. Delayen
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by NSF Grant 100614-010. G. C. is supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
One of the significant causes of residual losses in superconducting radio-frequency (SRF) cavities is trapped magnetic flux. The flux trapping mechanism depends on many factors that include cool-down conditions, surface preparation techniques, and ambient magnetic field orientation. Suitable diagnostic tools are not yet available to quantitatively correlate such factors’ effect on the flux trapping mechanism. A magnetic field scanning system (MFSS) consisting of AMR sensors, fluxgate magnetometers, or Hall probes is recently commissioned to scan the local magnetic field of trapped vortices around 1.3 GHz single-cell SRF cavities. In this contribution, we will present results from sensitivity calibration and the first tests of AMR sensors in the MFSS.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB344  
About • paper received ※ 19 May 2021       paper accepted ※ 09 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB345 Availability Modeling of the Solid-State Power Amplifiers for the CERN SPS RF Upgrade operation, cavity, simulation, MMI 2308
 
  • L. Felsberger, A. Apollonio, T. Cartier-Michaud, E. Montesinos, J.C. Oliveira, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  Funding: This project has received funding from the Euratom research and training programme 2019-2020 under grant agreement No 945077.
As part of the LHC Injector Upgrade program a complete overhaul of the Super Proton Synchrotron Radio-Frequency (RF) system took place. New cavities have been installed for which the solid-state technology was chosen to deliver a combined RF power of 2 MW from 2560 RF amplifiers. This strategy promises high availability as the system continues operation when some of the amplifiers fail. This study quantifies the operational availability that can be achieved with this new installation. The evaluation is based on a Monte Carlo simulation of the system using the novel AvailSim4 simulation software. A model based on lifetime estimations of the RF modules is compared against data from early operational experience. Sensitivity analyses have been made, that give insight to the chosen operational scenario. With the increasing use of solid-state RF power amplifiers, the findings of this study provide a useful reference for future application of this technology in particle accelerators.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB345  
About • paper received ※ 19 May 2021       paper accepted ※ 01 July 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB350 Design of 71 MHz Power Amplifier in a Single-ended Architecture for IRANCYC-10 Cyclotron cyclotron, simulation, impedance, factory 2325
 
  • F. Babagoli Moziraji, H. Afarideh
    AUT, Tehran, Iran
  • M. Dehghan
    Shahid Beheshti University, Tehran, Iran
  • F. Ghasemi
    NSTRI, Tehran, Iran
 
  In this paper, the design and simulation of a high power amplifier to provide the required power of a cyclotron accelerator (IRANCYC-10) is presented step-by-step. By combining four modules of this amplifier, a power of 2.5 kW can be achieved to start the main power amplifier. The single ended designs amplifier can generate 1 kW the operating frequency of 71MHz continuous wave (CW). The purpose of choosing this type of design is simplicity to build without the need for a balun, low weight to build high power, as well as cost-effectiveness. The gain and PAE of the SSPA are 21.21 and 71%, respectively. There are also ways to reduce the size of the amplifier.  
poster icon Poster TUPAB350 [1.008 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB350  
About • paper received ※ 19 May 2021       paper accepted ※ 15 August 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB369 A Fast Non-Linear Model for the EBS Combined Sextupole-Corrector Magnets sextupole, dipole, multipole, quadrupole 2381
 
  • G. Le Bec
    ESRF, Grenoble, France
 
  Corrector are often integrated in higher order accelerator magnets. In the new ESRF-EBS storage ring, the sextupoles include additional windings allowing for dipole and skew quadrupole corrections. The accurate modelization of such magnets is not as trivial as it may appear, due to their non-linearities and to the crosstalk between their channels. Changing any corrector current induce non-linear errors in the other corrector channels and in the main sextupole strength, making difficult the trimming of the magnets. A model based on a non-linear excitation curve and quadratic contributions from corrector currents was developed. This model is very fast and was included in the accelerator control system to compute the corrector currents in real-time. It was tested against 3D magnetic simulations and magnetic measurements and compared to a simpler matrix-based model.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB369  
About • paper received ※ 17 May 2021       paper accepted ※ 15 August 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXC03 Review of Superconducting Radio Frequency Gun cathode, gun, cavity, operation 2556
 
  • R. Xiang
    HZDR, Dresden, Germany
 
  The success of proposed high power free-electron lasers (FELs) and energy recovery linac (ERL) largely depends on the development of the electron source, which requires the best beam quality and CW operation. An elegant way to realize this average brilliance is to combine the high beam quality of mature normal conducting radio frequency photoinjector with the quick developing superconducting radio frequency technology, to build superconducting rf photoinjectors (SRF guns). In last decade, several SRF gun programs based on different approaches have achieved promising progress, even succeeded in routine operation at BNL and HZDR [*,**]. In the near future SRF guns are expected to play an important role for hard X-ray FEL facilities. In this contribution, we will review the design concepts, parameters, and the status of the major SRF gun projects.
*I. Petrushina et al., Phys. Rev. Lett. 124, 244801
**J. Teichert at al., Phys. Rev. Accel. Beams 24, 033401
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXC03  
About • paper received ※ 19 May 2021       paper accepted ※ 28 June 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB020 The Relation Between Field Flatness and the Passband Frequency in the Elliptical Cavities cavity, simulation, gun, accelerating-gradient 2636
 
  • G.-T. Park, R.A. Rimmer, H. Wang
    JLab, Newport News, Virginia, USA
 
  A technique that predicts the field flatness of the operating pi-mode based on the passband frequency is highly desirable when the direct measurement of the field is not available. Such a technique was developed for the SNS-PPU cavity, a 6-cell SRF cavity whose field flatness is important for cold operation. In this paper, we will present the theory on the relations between field profile and passband frequencies of the arbitrary deformed cavities, the simulation studies, and comparison with the experimental measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB020  
About • paper received ※ 17 May 2021       paper accepted ※ 24 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB138 Superconducting RF Gun with High Current and the Capability to Generate Polarized Electron Beams gun, electron, cathode, cavity 2936
 
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
  • S.A. Belomestnykh, S. Kazakov, T.N. Khabiboulline, M. Martinello, Y.M. Pischalnikov, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
  • J.C. Brutus, P. Inacker, Y.C. Jing, V. Litvinenko, J. Skaritka, E. Wang
    BNL, Upton, New York, USA
  • J.M. Grames, M. Poelker, R. Suleiman, E.J-M. Voutier
    JLab, Newport News, Virginia, USA
 
  High-current low-emittance CW electron beams are indispensable for nuclear and high-energy physics fixed target and collider experiments, cooling high energy hadron beams, generating CW beams of monoenergetic X-rays (in FELs) and gamma-rays (in Compton sources). Polarization of electrons in these beams provides extra value by opening a new set of observables and frequently improving the data quality. We report on the upgrade of the unique and fully functional CW SRF 1.25 MeV SRF gun, built as part of the Coherent electron Cooling (CeC) project, which has demonstrated sustained CW operation with CsK2Sb photocathodes generating electron bunches with record-low transverse emittances and record-high bunch charge exceeding 10 nC. We propose to extend the capabilities of this system to high average current of 100 milliampere in two steps: increasing the current 30-fold at each step with the goal to demonstrate reliable long-term operation of the high-current low-emittance CW SRF guns. We also propose to test polarized GaAs photocathodes in the ultra-high vacuum (UHV) environment of the SRF gun, which has never been successfully demonstrated in RF accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB138  
About • paper received ※ 25 May 2021       paper accepted ※ 29 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB165 Metamaterial Waveguide HOM Loads for SRF Accelerating Cavities HOM, GUI, vacuum, cavity 2994
 
  • S.V. Kuzikov
    Euclid TechLabs, Solon, Ohio, USA
 
  Suppression of beam induced HOMs is necessary for most SRF accelerating cavities driven with high currents. One of the problems in design of a HOM load is that vacuum compatible materials with high enough imaginary part of the dielectric permittivity, which provides absorption, have also a high real part of the permittivity. This does not allow absorbing RF radiation at short distance and in broad frequency band. We propose considering artificial metamaterials where besides lossy dielectric pieces, an absorber with high magnetic permeability is included. In our proposal, we suggest composing a waveguide HOM load of a metamaterial consisted of well-known ceramic and ferrite plates placed periodically in a stack. Such a design provides low return losses, compactness and broad frequency range of the operation.  
poster icon Poster WEPAB165 [1.844 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB165  
About • paper received ※ 19 May 2021       paper accepted ※ 02 June 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB360 Future Prospective for Bent Crystals in Accelerators lattice, collimation, scattering, experiment 3545
 
  • M. Romagnoni
    INFN-Ferrara, Ferrara, Italy
  • M. Romagnoni
    Universita’ degli Studi di Milano, Milano, Italy
 
  Super magnet dipoles employed to steer high energy particle beams are massive instruments requiring cryogenic cooling and featuring large energy consumption. A bent crystal has the potential in a few millimeters to deflect 100-1000 GeV particle beams as much as an hundreds-tesla magnetic dipole. Indeed, within the lattice of a crystal, large electric fields up to several GeV/cm are present. Positive charged particles can be efficiently channeled between two adjacent lattice planes, thus following their curvature. These features and the possibility to selectively affect only the portion of the beam intercepting the crystal led to the proposal of exploiting bent crystals for several purposes, such as the collimation of ions at LHC. In this scheme, the particles on the beam halo instead of being scattered by tens-centimeters long collimators are directly separated from the beam using a 4 mm long silicon crystal. The production of a bent crystal suitable for installation in the LHC beamline requires strict control over lattice features and bending apparatus. The results obtained by the years long research of the INFN research team in Ferrara are presented in this work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB360  
About • paper received ※ 14 May 2021       paper accepted ※ 28 July 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB007 Technology Spinoff and Lessons Learned from the 4-Turn ERL CBETA permanent-magnet, cavity, radiation, linac 3762
 
  • K.E. Deitrick, N. Banerjee, A.C. Bartnik, D.C. Burke, J.A. Crittenden, J. Dobbins, C.M. Gulliford, G.H. Hoffstaetter, Y. Li, W. Lou, P. Quigley, D. Sagan, K.W. Smolenski
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, R.L. Hulsart, G.J. Mahler, F. Méot, R.J. Michnoff, S. Peggs, T. Roser, D. Trbojevic, N. Tsoupas
    BNL, Upton, New York, USA
  • T. Miyajima
    KEK, Ibaraki, Japan
 
  The Cornell-BNL ERL Test Accelerator (CBETA) developed several energy-saving measures: multi-turn energy recovery, low-loss superconducting radiofrequency (SRF) cavities, and permanent magnets. With green technology becoming imperative for new high-power accelerators, the lessons learned will be important for projects like the FCC-ee or new light sources, where spinoffs and lessons learned from CBETA are already considered for modern designs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB007  
About • paper received ※ 20 May 2021       paper accepted ※ 05 July 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB074 ESRF-EBS: Implementation, Performance and Restart of User Operation MMI, operation, storage-ring, emittance 3929
 
  • J.-L. Revol, P. Berkvens, J.-F. Bouteille, N. Carmignani, L.R. Carver, J.M. Chaize, J. Chavanne, F. Ewald, A. Franchi, L. Hardy, J. Jacob, L. Jolly, G. Le Bec, I. Leconte, S.M. Liuzzo, D. Martin, J. Pasquaud, T.P. Perron, Q. Qin, P. Raimondi, B. Roche, K.B. Scheidt, R. Versteegen, S.M. White
    ESRF, Grenoble, France
 
  The European Synchrotron Radiation Facility - Extremely Brilliant Source (ESRF-EBS) is a facility upgrade allowing its scientific users to take advantage of the first high-energy 4th generation light source. In December 2018, after 30 years of operation, the beam stopped for a 12-month shutdown to dismantle the old storage ring and to install the new X-ray source. In December 2019, the first beam was stored and accumulated in the storage ring, allowing the vacuum conditioning and tuning to be started. The beam was delivered to beamlines in March 2020 for their commissioning. On 25 August, the user programme was restarted with beam parameters very close to nominal values. In this report, the milestones and key aspects of the return to user-mode operation are presented and discussed.  
poster icon Poster THPAB074 [2.864 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB074  
About • paper received ※ 19 May 2021       paper accepted ※ 26 July 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB120 Beam on Demand for High-Repetition-Rate X-Ray Free-Electron Lasers electron, laser, FEL, linac 3995
 
  • Z. Zhang, Y. Ding, Z. Huang
    SLAC, Menlo Park, California, USA
 
  High-repetition-rate (HRR) free-electron lasers (FELs) with multiple undulator beamlines will advance the frontiers of X-ray science significantly from the remarkable success of existing X-ray FEL facilities. The wide-ranging requirements for the photon properties from multiple beamlines are extremely challenging to satisfy by the same electron beam from a single superconducting radio-frequency (SRF) accelerator. To realize the full potential of an HRR FEL facility, a new emerging concept of "beam on demand" is proposed here. The concept is based on advanced beam dynamics and radio-frequency (RF) techniques to provide beam properties tailored to each undulator line at the desired repetition rate. The beam properties that will be pursued in this proposal include, but are not limited to, beam energy, bunch charge, bunch length, beam current, and its profile. The realization of "beam on demand" will allow optimization of photon properties of individual beamlines to maximize their performance and drastically improve the multiplexing capabilities of Linac Coherent Light Source II and its high-energy upgrade.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB120  
About • paper received ※ 17 May 2021       paper accepted ※ 23 July 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB153 Design, Construction and Tests of the Cooling System with a Cryocooler for Cavity Testing cavity, cryogenics, vacuum, simulation 4056
 
  • P. Pizzol, J.W. Lewellen, E.R. Olivas, E.I. Simakov, T. Tajima
    LANL, Los Alamos, New Mexico, USA
 
  Cryogenically cooled normal-conducting cavities have shown higher gradients than those operated at room temperature. We are constructing a compact cooling system with a cryocooler to test C-band normal-conducting cavities and 1.3 GHz superconducting cavities. This paper describes the design, construction, and cooling test results as well as some low-power cavity Q measurement results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB153  
About • paper received ※ 17 May 2021       paper accepted ※ 21 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB156 Built-in Thermionic Electron Source for an SRF Linacs cathode, cavity, electron, gun 4062
 
  • I.V. Gonin, S. Kazakov, R.D. Kephart, T.N. Khabiboulline, T.H. Nicol, N. Solyak, J.C.T. Thangaraj, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  The design of a thermionic electron source connected directly to a superconducting cavity, the key part of an SRF gun, is described. The results of beam dynamics optimization are presented which allow lack of beam current intercepting in the superconducting cavity. The electron source concept is presented including the cathode-grid assembly, thermal insulation of the cathode from the cavity, and the gun resonator design. The cavity thermal load caused by the gun is analyzed including the static heat load, black body radiation, backward electron heating, etc.  
poster icon Poster THPAB156 [0.670 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB156  
About • paper received ※ 19 May 2021       paper accepted ※ 12 July 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB173 Fundamental Study on Electromagnetic Characteristics of Half-Wave Resonator for 200 MeV Energy Upgrade of KOMAC Proton Linac cavity, simulation, linac, proton 4098
 
  • J.J. Dang, Y.-S. Cho, H.S. Kim, H.-J. Kwon, S. Lee
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC operation fund of KAERI by the Korea government (MSIT).
A superconducting linac has been developed at KOrea Multi-purpose Accelerator Complex (KOMAC). A goal of the SRF linac is to increase proton beam energy from 100 MeV to 200 MeV. 350 MHz medium beta half-wave resonator (HWR) should provide 3.6 MV accelerating voltage to achieve the energy upgrade. An electromagnetic (EM) analysis on the parametrically designed HWR cavity was conducted. The cavity design was optimized to reduce a peak electric field and a peak magnetic field while satisfying the required acerating voltage. In addition, a mechanical-EM coupled simulation was conducted to estimate a helium pressure sensitivity. Also, Lorentz force detuning was simulated. The design is being optimized to minimize the frequency detuning due to the helium pressure and Lorentz force.
 
poster icon Poster THPAB173 [0.800 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB173  
About • paper received ※ 19 May 2021       paper accepted ※ 21 June 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB320 ALD-Based NbTiN Studies for SIS R&D site, cavity, plasma, niobium 4420
 
  • I. González Díaz-Palacio, R.H. Blick, R. Zierold
    University of Hamburg, Hamburg, Germany
  • W. Hillert, M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Superconductor-Insulator-Superconductor multilayers improve the performance of SRF cavities providing magnetic screening of the bulk cavity and lower surface resistance. In this framework NbTiN mixtures stand as a potential material of interest. Atomic layer deposition (ALD) allows for uniform coating of complex geometries and enables tuning of the stoichiometry and precise thickness control in sub-nm range. In this talk, we report about NbTiN thin films deposited by plasma-enhanced ALD on insulating AlN buffer layer. The deposition process has been optimized by studying the superconducting electrical properties of the films. Post-deposition thermal annealing studies with varying temperatures, annealing times, and gas atmospheres have been performed to further improve the thin film quality and the superconducting properties. Our experimental studies show an increase in Tc by 87.5% after thermal annealing and a maximum Tc of 13.9 K has been achieved for NbTiN of 23 nm thickness. Future steps include lattice characterization, using XRR/XRD/EBSD/PALS, and SRF measurements to obtain Hc1 and the superconducting gap.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB320  
About • paper received ※ 24 May 2021       paper accepted ※ 23 July 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB322 Transient Beam Loading in the CBETA Multi-Turn ERL cavity, linac, beam-loading, operation 4422
 
  • N. Banerjee
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by NSF Grant No. DMR0807731, DOE Award No. DE-SC0012704, and NYSERDA Agreement No. 102192.
The Cornell-BNL ERL Test Accelerator (CBETA) is the first superconducting multi-turn ERL that has been commissioned at Cornell University in a low current mode. In this paper, we first discuss a new model of beam loading which is valid for the low injection energies used in CBETA. Using this model, we explore the effect of bunch patterns, beam turn-on, and turn-off transients on the fundamental mode of the 7-cell SRF cavities used in the main linac. In particular, we examine the operational constraints on the rf system at the design current of 40 mA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB322  
About • paper received ※ 20 May 2021       paper accepted ※ 29 July 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB336 Novel Magnetron Operation and Control Methods for Superconducting RF Accelerators controls, injection, operation, cavity 4442
 
  • G.M. Kazakevich, R.P. Johnson
    Muons, Inc, Illinois, USA
  • T.N. Khabiboulline, G.V. Romanov, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  High power magnetrons designed and optimized for industrial heating, being injection-locked, have been suggested to power superconducting RF cavities for accelerators due to lower cost and higher efficiency. However, standard operation methods do not provide high efficiency with wideband control suppressing microphonics. We have developed and experimentally verified novel methods of operating and controlling the magnetron that provide stable RF generation with higher efficiency and lower noise than other RF sources. By our method the magnetrons operate with the anode voltage notably lower than the self-excitation threshold improving its performance. This is also a promising way to increase tube reliability and longevity. A magnetron operating with the anode voltage lower than the self-excitation threshold, in so-called stimulated coherent generation mode has special advantage for pulse operation with a gated injection-locking signal. This eliminates the need for expensive pulsed HV modulators and additionally increases the magnetron RF source efficiency due to absence of losses in HV modulators.  
poster icon Poster THPAB336 [0.960 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB336  
About • paper received ※ 15 May 2021       paper accepted ※ 08 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB343 Test Results of the Prototype SSR1 Cryomodule for PIP-II at Fermilab cavity, cryomodule, vacuum, focusing 4461
 
  • D. Passarelli, J. Bernardini, C. Boffo, B.M. Hanna, S. Kazakov, T.N. Khabiboulline, A. Lunin, J.P. Ozelis, M. Parise, Y.M. Pischalnikov, V. Roger, B. Squires, A.I. Sukhanov, G. Wu, V.P. Yakovlev, S. Zorzetti
    Fermilab, Batavia, Illinois, USA
  • C. Contreras-Martinez
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under Contract No. DEAC02- 07CH11359 with the United States Department of Energy
A prototype cryomodule containing eight Single Spoke Resonators type-1 (SSR1) operating at 325 MHz and four superconducting focusing lenses has been successfully assembled and cold tested in the framework of PIP-II project at Fermilab. The performance of cavities and focusing lenses along with test results of other cryomodule’s key parameters are presented in this contribution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB343  
About • paper received ※ 20 May 2021       paper accepted ※ 08 August 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB348 INFN-LASA for the PIP-II LB650 Linac cavity, linac, experiment, cryogenics 4474
 
  • R. Paparella, M. Bertucci, M. Bonezzi, A. Bosotti, A. D’Ambros, A.T. Grimaldi, P. Michelato, L. Monaco, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
 
  INFN joined the international effort for the PIP-II project at Fermilab and it’s going to contribute to the low-beta section of the PIP-II proton linac. In particular, INFN-LASA is finalizing its commitment to deliver in kind the full set of the LB650 cavities, namely 36 plus spares 5-cell cavities at 650 MHz and geometrical beta 0.61. All cavities, designed by INFN-LASA, will be produced and surface treated in industry, qualified through vertical cold test, and delivered as ready for string installation. This paper reports the status of INFN’s contribution to PIP-II and of ongoing activities toward the experimental qualifications of infrastructures and prototypes.  
poster icon Poster THPAB348 [4.076 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB348  
About • paper received ※ 16 May 2021       paper accepted ※ 01 July 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB351 INFN-LASA Experimental Activities on PIP-II Low-Beta Cavity Prototypes cavity, target, experiment, superconductivity 4481
 
  • M. Bertucci, A. Bosotti, A. D’Ambros, A.T. Grimaldi, P. Michelato, L. Monaco, C. Pagani, R. Paparella, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • A. Gresele, A. Torri
    Ettore Zanon S.p.A., Nuclear Division, Schio, Italy
  • M. Rizzi
    Ettore Zanon S.p.A., Schio, Italy
 
  This paper reports on the first results obtained by INFN-LASA on PIP-II low-beta cavity prototypes. The goal of this activity was to validate the reference surface treatment based on Electropolishing as a bulk removal step. The cavity treatment procedures are here presented together with the strategy used for their optimization. The experimental results of cavity cold tests for a single cell prototype are presented and discussed. Having this cavity achieved the requested performance, the baseline procedure is considered as validated and a plan for a future high-Q cavity surface treatment is proposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB351  
About • paper received ※ 19 May 2021       paper accepted ※ 23 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXC01 Superconducting Radio-Frequency Cavity Fault Classification Using Machine Learning at Jefferson Laboratory cavity, cryomodule, network, radio-frequency 4535
 
  • C. Tennant, A. Carpenter, T. Powers, L.S. Vidyaratne
    JLab, Newport News, Virginia, USA
  • K.M. Iftekharuddin, M. Rahman
    ODU, Norfolk, Virginia, USA
  • A.D. Shabalina
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: This work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC05-06OR23177.
We report on the development of machine learning models for classifying C100 superconducting radiofrequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. Of the 418 SRF cavities in CEBAF, 96 are designed with a digital low-level RF system configured such that a cavity fault triggers recordings of RF signals for each of eight cavities in the cryomodule. Subject matter experts analyze the collected time-series data and identify which of the eight cavities faulted first and classify the type of fault. This information is used to find trends and strategically deploy mitigations to problematic cryomodules. However, manually labeling the data is laborious and time-consuming. By leveraging machine learning, near real-time - rather than postmortem - identification of the offending cavity and classification of the fault type has been implemented. We discuss the performance of the machine learning models during a recent physics run. We also discuss efforts for further insights into fault types through unsupervised learning techniques and present preliminary work on cavity and fault prediction using data collected prior to a failure event.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXC01  
About • paper received ※ 16 May 2021       paper accepted ※ 01 July 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)