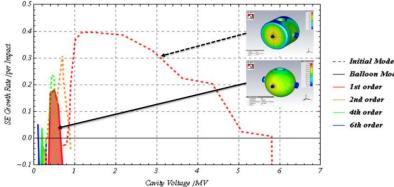
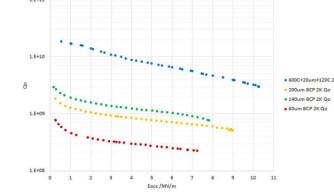
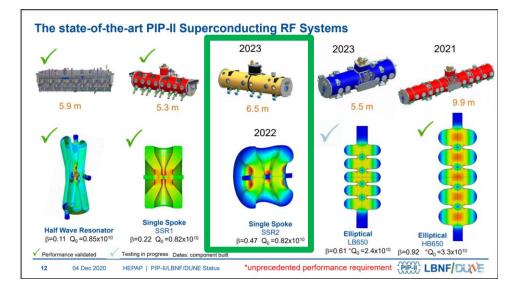


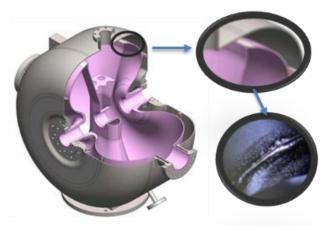
A New Design of a Dressed Balloon Cavity With Superior Mechanical Properties


Roman Kostin^{*}, Chunguang Jing, Euclid BeamLabs, 367 Remington Blvd., Bolingbrook, IL 60440, USA V.Yakovlev, I.Gonin, G.Romanov, T. Khabiboulline, FNAL, IL, USA B. Laxdal, TRIUMF, BC, Canada M.Kelly, ANL, IL, USA


Work supported by the SBIR program of the U.S. Department of Energy, under grant DE-SC0020781


*r.kostin@euclidtechlabs.com

Motivation

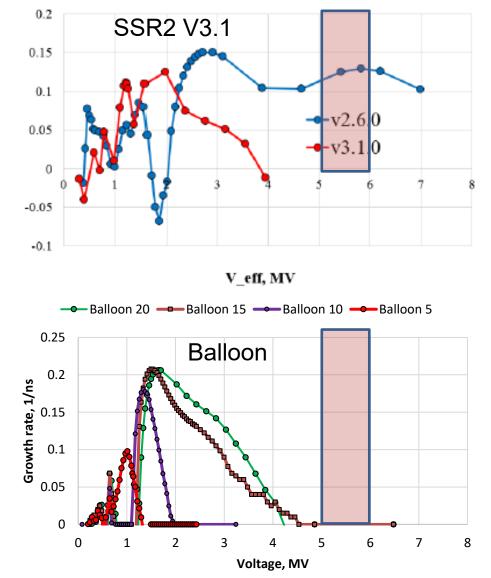

- Balloon Spoke cavity proposed almost a decade ago demonstrated superior multipactor suppression but unfortunately suffered from mid-field Q-slope.
- With this project we would like to demonstrate high Q0 performance for balloon cavity tailored down to PIP-II SSR2 needs as a reference point.
- SSR2 cavity design of PIP-II project at Fermilab is in the development stage.
- SSR2 section (35 cavities) consumes more than 25% of PIP-II cryogenic budget, having high Q0 will greatly benefit the whole linac.

Courtesy of: Chris Mossey, Fermilab Deputy Director For LBNF/DUNE Building for Discovery: PIP-II, LBNF, and DUNE.

Courtesy of: Z.Yao, B.Laxdal, Tesla Technology Collaboration meeting 2018.

Balloon cavity RF parameters compared with other cavities

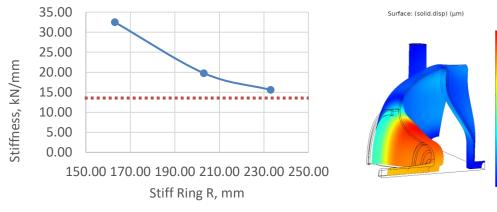
- Balloon cavity was optimized to satisfy PIP-II SSR2 requirements.
- 4 different spoke fillets were analyzed: from 5mm to 20mm.
- Electrodynamic parameters are comparable with current PIP-II design, but MP suppression is more efficient (see the next slide)
- Additional EP ports position were optimized to reduce filed enhancements
- EP port Radii R>200 has no effect on B_{pk} for 45deg configuration


Parameter		Balloon (10mm)	SSR2_V3.1 Current PIP-II	SSR2_V2.6 Previous PIP-II	
Frequency [MHz]		325.02	325.0	325	
Optimal beta		0.475	0.475	0.475	
Effective length [m]		0.438	0.438	0.438	
Epk/Eacc		3.53	3.41	3.38	
Bpk/Eacc [mT/MV/m]		5.92	6.78	5.93	
G [Ohm]		115.7	115.18	115	
R/Q [Ohm]		320.0	306	297	
Bpk at 5 MeV [mT]		68	77.6	67.7	
Magnetic field distribution in 5mm balloon	EP port R=200mn Beam pipe		Electric field distributior		

Multipactor (MP) performance

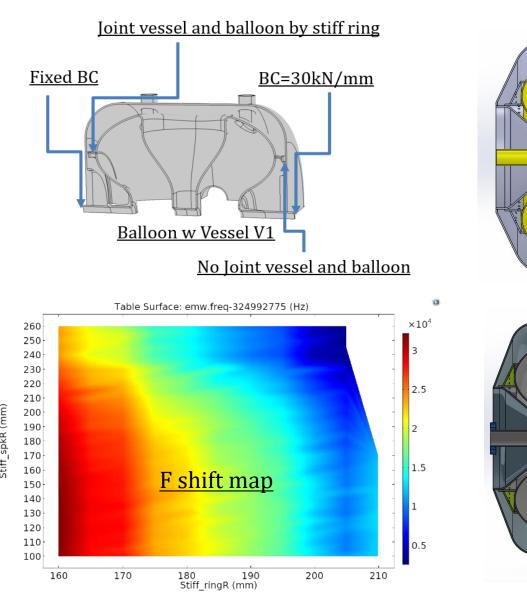
- SSR2 v2.6 has strong Multipactor at operating voltage (5MV), which was the main reason for the design change to V3.1.
 SSR2 v3.1 has pretty good MP suppression: no MP
- SSR2 v3.1 has pretty good MP suppression: no MP after 4MV.
- Balloon cavity MP suppression performance significantly depends on the spoke base fillet. Two main barriers are found around 1MV and at higher voltage depending on the fillet.
- 10mm spoke fillet configuration was chosen as a trade off between MP suppression and surface chemical treatment. This case provides significantly better MP suppression than SSR2 V3.1

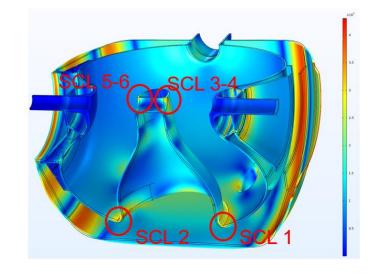
Courtesy of: P. Berrutti et al., "New Design of SSR2 Spoke Cavity for PIP II SRF Linac".

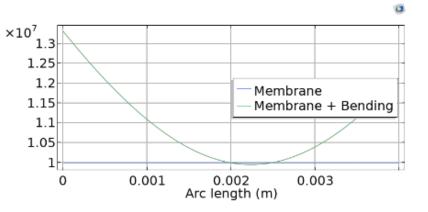


Bare cavity mechanical studies summary

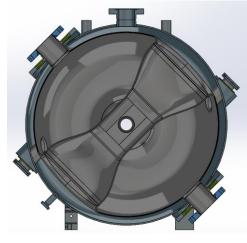
120

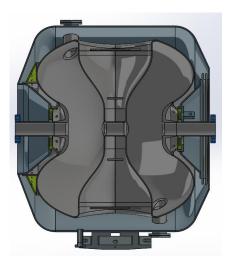

- Bare cavity satisfies almost all of the TRS.
- Cavity stiffness significantly depends on the side stiffening ring.
- To satisfy TRS, no ring should be used.
- dF/dP optimization can be carried out for the dressed cavity only.




Mechanical design requirements	TRS	Bare Balloon
Stiffening ring R, mm		NA/160
Longitudinal stiffness at room temperature, kN/mm	<16	14.3/ <mark>32</mark>
Operating frequency tuning sensitivity, kHz/mm	>250	538
MAWP of jacketed cavity RT/2K, bar	2/4	NA
Inelastic tuning, kHz	>500	1028
LFD	<4	?/3.2
Cool down F0 shift, kHz	NA	464
Leak check F0 shift, Pressure/Epsilon/Total, kHz	NA	+81/- 62/+19
Leak check Stresses, MPa	43	30
Sensitivity to LHe pressure fluctuations of dressed cavity, Hz/mbar	<25	

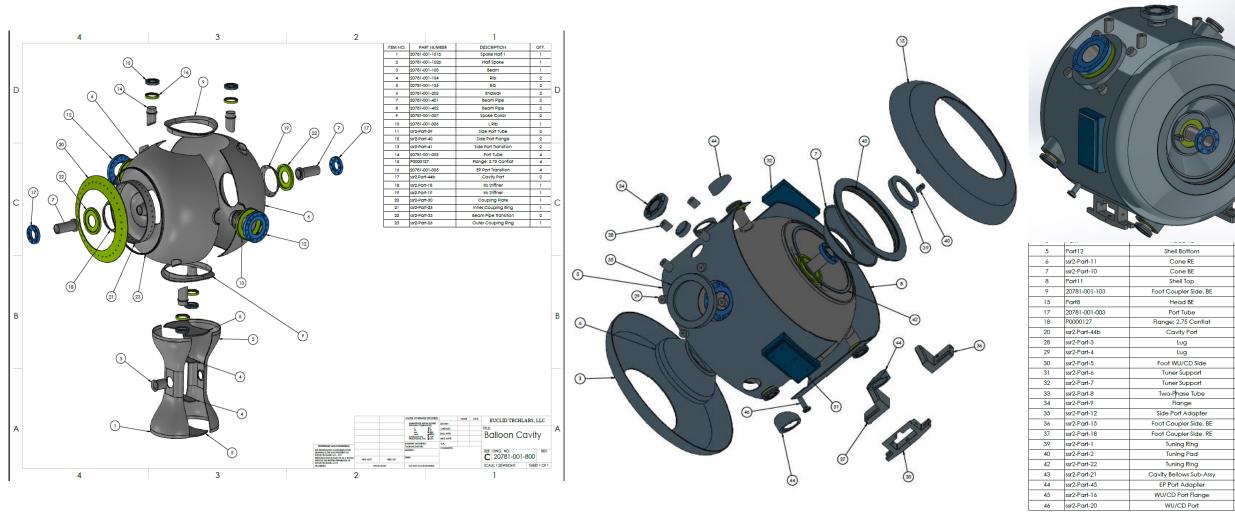
<u>Helium Vessel design studies</u>





<u>Mechanical Properties Summary</u>

Mechanical design requirements	PIP-II SSR2 TRS	V1.0 bare	V2.1 Dressed	SSR2 V3.1
Longitudinal stiffness at room temperature, kN/mm	<16	14.3	16.5	14.95
Operating frequency tuning sensitivity, kHz/mm	>250	538	292	308
MAWP of jacketed cavity RT/2K, bar	2/4	NA	ОК	ОК
Inelastic tuning, kHz	>500	1028	990	
LFD	<4	3.2	3.0	4.73
Sensitivity to LHe pressure fluctuations of dressed cavity, Hz/mbar	<25	NA	0	0



Assembly drawing of Balloon 10EP w SSR2 HV

Thank you for your attention!

