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Abstract
Corrector are often integrated in higher order accelerator

magnets. In the new ESRF-EBS storage ring, the sextupoles
include additional windings allowing for dipole and skew
quadrupole corrections. The accurate modelization of such
magnets is not as trivial as it may appear, due to their
non-linearities and to the crosstalk between their channels.
Changing any corrector current induce non-linear errors
in the other corrector channels and in the main sextupole
strength, making difficult the trimming of the magnets. A
model based on a non-linear excitation curve and quadratic
contributions from corrector currents was developed. This
model is very fast and was included in the accelerator control
system to compute the corrector currents in real-time. It was
tested against 3D magnetic simulations and magnetic mea-
surements and compared to a simpler matrix-based model.

INTRODUCTION
The Extremelly Brilliant Source (EBS) is an upgrade of

the European Synchrotron Radiation Facility (ESRF) based
on a new storage ring [1, 2]. The optics rely on high gra-
dient, compact magnets [3, 4]. This paper focuses on the
correctors integrated in the sextupole magnets (Fig. 1) [5].
Four correction channels are available. Combining these
channels can generate normal (resp. skew) dipole 𝑏1 (resp.
𝑎1), skew quadrupole 𝑎2 and normal sextupole components
𝑏3 defined as

𝐵 = ∑
𝑛>0

(𝑎𝑛 + 𝑖𝑏𝑛) ( 𝑧
𝑟0

)
𝑛−1

,

where 𝐵 = 𝐵𝑌 + 𝑖𝐵𝑋 is the complex field, 𝑧 = 𝑥 + 𝑖𝑦 the
position and 𝑟0 the reference radius.

The operation of the storage ring requires an accurate
model of these magnets in order to drive their main and cor-
rector power supplies. Such a model should be sufficiently
fast and should work in forward (currents to strengths) and
reverse (strengths to currents) directions.

The sextupole magnets are saturated at high current, as
shown in Fig. 2. The non-linearities induced by the satura-
tion complicate the computation of strengths: a simple, ma-
trix based model with linear dependence in currents would
only work at low sextupole current.

A non-linear model was developed. The mathematical
details of the model, and its implementation, are described
in the next section. The model predictions are compared to
magnetic measurements in a later section.

∗ lebec@esrf.fr

Figure 1: Design view of a combined sextupole-corrector
magnet. Each pole is equipped with one sextupole coil and
one correction coil. All sextupole coils are connected in
series, while correction coils are connected according to the
arrows.

Figure 2: Measured sextupole strength (blue) and skew
quadrupole (red, dashed) versus main current.

SEXTUPOLE-CORRECTOR MAGNET
MODELS

Linear Model
The first model developped was linear in corrector cur-

rents and non-linear in the main sextupole current 𝑖0. It
writes

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎1
𝑏1
𝑎2
𝑏3

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

0
0
0

𝑘 (𝑖0)

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑖0 + M (𝑖0) I,

where I = 𝑇 (𝑖1, ..., 𝑖4) are the corrector currents and the
coefficients of the matrix M depend non-linearly in the main
current.
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This model is simple to implement. The matrix coef-
ficients were determined for a set of main currents, with
corrector channels off and on. They were interpolated ver-
sus main current with cubic splines.

The accuracy of the model was estimated from 3D sim-
ulations of a sextupole-corrector magnet, using the Radia
magnetostatic code [6–8]. Relative errors up to 2% were
obtained on the sextupolar component 𝑏3. Given the 0.1%
sextupole strength accuracy needed for the operation of the
machine, this model was considered as not suitable.

Quadratic Model
A higher order model was developed to better reproduce

the non-linearities of the combined sextupole-correctors. At
a given main sextupole current, the strengths are

⎛⎜⎜⎜⎜⎜⎜
⎝

𝑎1
𝑏1
𝑎2
𝑏3

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

0
0
0

𝑘 (𝑖0)

⎞⎟⎟⎟⎟⎟⎟
⎠

𝑖0 + M (𝐼0) I +
⎛⎜⎜⎜⎜
⎝

𝑇I F1 (𝑖0) I
...

𝑇I F4 (𝑖0) I

⎞⎟⎟⎟⎟
⎠

,

where the last term describes the quadratic contribution of
corrector currents. The M and F𝑝 matrices depend on the
main current. Using short hand tensor notations, the model
writes

𝑐𝑗 = 𝑘𝑗𝑖0 + 𝑚𝑗
𝑘𝑖𝑘 + 𝑓 𝑗

𝑘𝑙𝑖
𝑘𝑖𝑙,

where the 𝑘𝑗, 𝑚𝑗
𝑘 and 𝑓 𝑗

𝑘𝑙 are functions of 𝑖0.
It is often more convenient to express the multipole com-

ponents as linear forms. This gives for the skew dipole:

𝑎1 = (𝑖1, ..., 𝑖4, 𝑖21, 𝑖1𝑖2, ..., 𝑖24) ⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑔1
...

𝑔4
𝑔11
𝑔12

...
𝑔44

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

where we have introduced the notation 𝑔𝑘 = 𝑚1
𝑘 and 𝑔𝑘𝑙 = 𝑓 1

𝑘𝑙.
Similar linear forms can be written for the other components.

Symmetries
This model has a large number of coefficients: without

additional assumption, 81 parameters should be determined
at each value of 𝑖0. This would imply a significant num-
ber of simulations or magnetic measurements. However,
this number can be reduced by using the symmetries of the
magnet.

Let us focus on the skew dipole. Its linear dependencies
in 𝑖1 and 𝑖3 should have opposite signs, whereas it does not
vary with 𝑖2 and 𝑖4, etc. The skew dipole symmetries can be
described by a sparse matrix S1:

𝑎1 = (𝑖1, ..., 𝑖4, 𝑖21, 𝑖1𝑖2, ..., 𝑖24) S1
⎛⎜⎜⎜⎜
⎝

𝑔1
...

𝑔44

⎞⎟⎟⎟⎟
⎠

,

where

S1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 ... ... 0
0 ... ... 0

−1 0 ... ... 0
0 ... ... 0
0 0 0 0 1 0 ... 0
0 ... 0 1 0 ... 0
0 ... ... 0
0 ... 0 −1 0 ... 0
0 ... ... 0
0 ... 0 −1 0 ... 0
0 ... 0 −1 0 ... 0
0 ... 0 −1 0 ... 0
0 ... ... 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Similar matrices can be found for 𝑏1, 𝑎2 and 𝑏3.

Estimation of Model Parameters
Let 𝐼𝑛 = (𝑖1𝑛, ...𝑖4𝑛) be a vector of corrector currents and

𝑎1𝑛 the corresponding skew dipole. Combining 𝑁 vectors
of currents and dipole measurements gives

⎛⎜⎜⎜⎜
⎝

𝑎11
...

𝑎1𝑁

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑖11 ... 𝑖241
...

...
𝑎1𝑁 ... 𝑖24𝑁

⎞⎟⎟⎟⎟
⎠

S1
⎛⎜⎜⎜⎜
⎝

𝑔1
...

𝑔44

⎞⎟⎟⎟⎟
⎠

= H
⎛⎜⎜⎜⎜
⎝

𝑔1
...

𝑔44

⎞⎟⎟⎟⎟
⎠

.

The model parameters at main current 𝑖0 can then be esti-
mated from a pseudo-inverse of H:

⎛⎜⎜⎜⎜
⎝

𝑔1
...

𝑔44

⎞⎟⎟⎟⎟
⎠

= H+
⎛⎜⎜⎜⎜
⎝

𝑎11
...

𝑎1𝑁

⎞⎟⎟⎟⎟
⎠

,

and the same approach can be applied to the other compo-
nents. One should notice that one single multipole measure-
ment gives the four components 𝑎1 to 𝑏3, further reducing
the number of measurements needed for the parameter es-
timation. At a given main current 𝑖0, the complete set of
parameters can be deduced from measurements with eight
current vectors:

𝐼1 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
0
0
0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝐼2 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1
0
0
0

⎞⎟⎟⎟⎟⎟⎟
⎠

,𝐼3 =
⎛⎜⎜⎜⎜⎜⎜
⎝

−1
0
0
0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝐼4 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
1
0
0

⎞⎟⎟⎟⎟⎟⎟
⎠

,

𝐼5 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
−1
0
0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝐼6 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
1
1
0

⎞⎟⎟⎟⎟⎟⎟
⎠

,𝐼7 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1
0

−1
0

⎞⎟⎟⎟⎟⎟⎟
⎠

, 𝐼8 =
⎛⎜⎜⎜⎜⎜⎜
⎝

0
1
0

−1

⎞⎟⎟⎟⎟⎟⎟
⎠

.

The main sextupole strength is determined by 𝐼1, the linear
and quadratic terms of channel 1 and 3 are estimated from
𝐼2 and 𝐼3, the terms of channels 2 and 4 are given by 𝐼4 and 5
and the remaining current vectors are for the crossed terms.

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-TUPAB369

TUPAB369C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

2382

MC7: Accelerator Technology

T09 Room Temperature Magnets



Implementation
Five input currents (main power supply plus four corrector

channels) are available to drive four multipole channels. We
decided to set the 𝑏3 contribution of the correctors to zero
in all cases. This simplifies the computation of the currents
from strengths, which is performed as follows:

• The main sextupole current is obtained from the excita-
tion curve, using Newton’s method

• The parameters of the quadratic model are interpolated
at this current

• The corrector currents are obtained by inverting the
matrix of the model

The model above was implemented as a C++ library. It
relies on the Eigen library for matrix computations [9].

It is initialized with a table of parameters measured at
various currents and with an additional calibration parameter
which links the strength of a given magnet to a reference.
Cubic spline interpolation functions of the main current are
initialized for all parameters of the model. This step takes a
few milliseconds on a single CPU.

After initialization, the computation of strengths from
currents or currents from strengths takes about 5 µs CPU
time.

MAGNETIC MEASUREMENTS
After a first validation based on simulations, the quadratic

model was tested on a real magnet. The magnetic measure-
ments were performed with a moving stretched wire bench
developed at the ESRF [10]. The field multipoles were com-
puted from measurements of the magnetic field integral on
a circle.

The number of corrector current vectors was increased
from 8 (see above) to 15 in order to improve the quality of
the data.

The measurements have shown that the magnetic hystere-
sis [11] is the main limitation of the model: the measured
values depend on the magnet history. To make the measure-
ments repeatable, the hysteresis implied cycling the correc-
tors with a sequence that is not compatible with operation in
the machine (at maximum current, the correctors can change
the sextupole by more than 20%).

Table 1 shows sample test results measured at 90 A. It
corresponds to a saturated working point: the sextupole
efficiency is reduced by 17% and the skew quadrupole ef-
ficiency is reduced by 69% (Fig. 2). The relative errors on
the sextupole components are in the range of 0.1%, which
remains acceptable for operation, and the relative errors in
the corrector strengths are in the range of 1%.

CONCLUSION
The outputs of the non-linear sextupole-corrector model

are in very good agreement with 3D simulation results: the
relative errors are in the range of 10−4. The model compu-
tation time is 5 microseconds per magnet on a single CPU,
which is compatible with its integration in the ESRF control
system. It correctly predicts the effect of the magnetic satu-
ration on the sextupole and the corrector channels. However,

Table 1: Sample Test Results at 90 A Main Current (i.e.
Saturated)

Test 1 Test 2
Spec. Meas. Spec. Meas.

𝑎1 (T mm) 0 0.034 0 0.003
𝑏1 (T mm) 6 5.96 0 0.097
𝑎2/𝑟0 (T) 0 -0.003 0.13 0.1287
𝑏3/𝑟2

0 (T / mm) 0.46984 0.46916 0.46984 0.46956

real magnets are affected by magnetic hysteresis. This hys-
teresis is not included in the model, leading to discrepencies
between its predictions and magnetic measurements. The
next step will be the implementation of an hysteresis model,
in which this non-linear model should be integrated.
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