Keyword: shielding
Paper Title Other Keywords Page
MOPAB123 Radiation Safety Considerations For The APS Upgrade Injector radiation, neutron, booster, survey 445
 
  • K.C. Harkay, J.R. Calvey, S. Chitra, G.I. Fystro, M.J. Henry, E.E. Heyeck, B.J. Micklich, K.P. Wootton
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by U. S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
The Advanced Photon Source Upgrade (APS-U) is a high-performance fourth-generation storage ring light source based on multibend achromat optics. As such, APS-U will require on-axis injection. The injectors will need to supply full-current bunch replacement in the ring; therefore, the injected bunch charge will be up to five times higher than what is typical for APS. A program was conducted to measure the radiation dose above the injector transport line to the APS storage ring for both normal operation conditions and controlled loss scenarios. Standard survey meters were used to record the dose. A review of the dose data identified opportunities to minimize the potential dose under normal APS-U high charge operation and fault conditions; these include improving the supplemental shielding and adding engineered controls. In addition, the dose data provide a benchmark for evaluating new radiation monitors for APS-U.
 
poster icon Poster MOPAB123 [1.317 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB123  
About • paper received ※ 18 May 2021       paper accepted ※ 24 May 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB382 Synchrotron Light Shielding for the 166 MHz Superconducting RF Section at High Energy Photon Source cavity, synchrotron, storage-ring, radiation 1169
 
  • X.Y. Zhang, Z.Q. Li, Q. Ma, P. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Funding: This work was supported by High Energy Photon Source, a major national science and technology infrastructure in China.
The High Energy Photo Source (HEPS) project has been under construction since 2019, and will be first diffraction-limited synchrotron light source in China. A 6 GeV electron beam with 200 mA current will be stored in the main ring. If synchrotron light produced from this energetic electron beam hits the superconducting cavity’s surface, it would cause thermal breakdown of the superconductivity. In the current lattice design, these lights cannot be fully blocked by the collimator in the upstream lattice cell, therefore a shielding scheme inside the rf section is required. This however brings great challenges to the already limited space. The design of the collimator has been focused on fulfilling shielding requirements while optimizing beam impedance, synchrotron light power density, thermal and mechanical stabilities. Shielding materials are subsequently chosen with dedicated cooling to ensure long-term stable operations. In this paper, a shielding scheme inside the rf section of the HEPS storage ring is presented. The synchrotron light mainly from the upstream bending magnet is successfully block. The sensitivity to beam position movement and installation error is also analyzed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB382  
About • paper received ※ 17 May 2021       paper accepted ※ 11 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB416 BDSIM Developments for Hadron Therapy Centre Applications proton, simulation, radiation, neutron 1252
 
  • E. Ramoisiaux, E. Gnacadja, C. Hernalsteens, N. Pauly, R. Tesse, M. Vanwelde
    ULB, Bruxelles, Belgium
  • S.T. Boogert, L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • C. Hernalsteens
    CERN, Geneva, Switzerland
  • W. Shields
    JAI, Egham, Surrey, United Kingdom
 
  Hadron therapy centres are evolving towards reduced-footprint layouts, often featuring a single treatment room. The evaluation of beam properties, radiation protection quantities, and concrete shielding activation via numerical simulations poses new challenges that can be tackled using the numerical beam transport and Monte-Carlo code Beam Delivery Simulation (BDSIM), allowing a seamless simulation of the dynamics as a whole. Specific developments have been carried out in BDSIM to advance its efficiency toward such applications, and a detailed 4D Monte-Carlo scoring mechanism has been implemented. It produces tallies such as the spatial-energy differential fluence in arbitrary scoring meshes. The feature makes use of the generic boost::histogram library and allows an event-by-event serialisation and storage in the ROOT data format. The pyg4ometry library is extended to improve the visualisation of critical features such as the complex geometries of BDSIM models, the beam tracks, and the scored quantities. Data are converted from Geant4 and ROOT to a 3D visualisation using the VTK framework. These features are applied to a complete IBA Proteus One model.  
poster icon Poster MOPAB416 [1.575 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB416  
About • paper received ※ 19 May 2021       paper accepted ※ 12 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB031 Construction and Installation of the New CERN Proton Synchrotron Internal Beam Dumps vacuum, MMI, interface, proton 1409
 
  • K.G. Andersen, M. Calviani, A. Cherif, T. Coiffet, A. De Macedo, S. Devidal, J.-M. Geisser, S.S. Gilardoni, M.M.J. Gillet, E. Grenier-Boley, J.M. Heredia, A. Majbour, F. Monnet, M.R. Monteserin, F.-X. Nuiry, D. Pugnat, G. Romagnoli, Y.D.R. Seraphin, J.A.F. Somoza, N. Thaus
    CERN, Geneva 23, Switzerland
 
  In the framework of the CERN Large Hadron Collider Injectors Upgrade (LIU) Project, the Proton Synchrotron (PS) has been equipped with two new movable Internal Dumps (PSID), each of them capable of absorbing particle beams of an energy of up to 100 kJ. These dumps replace the old Internal Dumps, which have been operated in the accelerator complex since their installation in 1975 until their decommissioning and removal from the machine during the second LHC Long Shut down (LS2). This contribution will address the construction and testing phases of the new PSIDs, including the assembly of the dump core, its actuation system and the respective shielding, mechanical running-in tests, metrology adjustments, Ultra-High Vacuum (UHV) and impedance acceptance tests. The described installation work was completed successfully, and the new generation Dumps are currently operational in the PS machine.  
poster icon Poster TUPAB031 [3.146 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB031  
About • paper received ※ 18 May 2021       paper accepted ※ 27 May 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB167 Status of Conduction Cooled SRF Photogun for UEM/UED gun, SRF, cavity, cryomodule 1773
 
  • R.A. Kostin, C. Jing
    Euclid Beamlabs, Bolingbrook, USA
  • P.V. Avrakhov, A. Liu, Y. Zhao
    Euclid TechLabs, Solon, Ohio, USA
 
  Funding: DOE #DE-SC0018621
Benefiting from the rapid progress on RF photogun technologies in the past two decades, the development of MeV range ultrafast electron diffraction/microscopy (UED and UEM) has been identified as an enabling instrumentation. UEM or UED use low power electron beams with modest energies of a few MeV to study ultrafast phenomena in a variety of novel and exotic materials. SRF photoguns become a promising candidate to produce highly stable electrons for UEM/UED applications because of the ultrahigh shot-to-shot stability compared to room temperature RF photoguns. SRF technology was prohibitively expensive for industrial use until two recent advancements: Nb3Sn and conduction cooling. The use of Nb3Sn allows to operate SRF cavities at higher temperatures (4K) with low power dissipation which is within the reach of commercially available closed-cycle cryocoolers. Euclid is developing a continuous wave (CW), 1.5-cell, MeV-scale SRF conduction cooled photogun operating at 1.3 GHz. In this paper, the technical details of the design and first experimental data are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB167  
About • paper received ※ 29 May 2021       paper accepted ※ 21 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB194 Operation Status of CSNS/RCS Transverse Collimation System collimation, radiation, radioactivity, monitoring 1862
 
  • J.B. Yu, J.X. Chen, L. Liu, X.J. Nie, C.J. Ning, G.Y. Wang, A.X. Wang, J.S. Zhang
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • L. Kang, Q.B. Wu, S.Y. Xu
    IHEP, Beijing, People’s Republic of China
 
  Funding: Natural Science Foundation of Guangdong Province 2018A030313959
In order to meet the requirements of daily maintenance of CSNS/RCS, the transverse collimation system was designed to concentrate the uncontrollable beam loss in this region. Based on physical parameters, considering the processing technology, the area was rationally arranged; combined with the requirements of physical and radiation protection, under the premise of meeting the use requirements, fully consider the limit switch, mechanical hard limit and other components, increasing the output control signals of rotary encoder and displacement sensor, the movement of the absorbers were monitored. At present, the beam collimation system has been running with no mechanical failure for two years on CSNS, and it plays an active role in beam power boost and beam loss control, which proves that the structural design of the system is reasonable.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB194  
About • paper received ※ 17 May 2021       paper accepted ※ 11 June 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB264 Shielding of CSR Wake in a Drift impedance, radiation, wakefield, synchrotron-radiation 2079
 
  • G. Stupakov
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the Department of Energy, contract DE-AC03-76SF00515.
A one-dimensional model of coherent synchrotron radiation (CSR) wakefield developed in Refs. [*,**] is used in computer codes for the simulation of relativistic electron beams. It includes transient effects at the entrance and exit from a bending magnet of finite length. In the ultra-relativistic limit, v=c, the exit CSR wake decays inversely proportional to the distance from the magnet end. To calculate the total energy loss of the beam one needs to integrate this wake to infinity, but the integral diverges. This means that one has to either drop the assumption of the infinite value of the Lorentz factor or take into account the shielding effect of the metal walls in the vacuum chamber. In practice, the latter effect is often dominant. In this work, we derive formulas for the CSR wake in the drift after an exit from the magnet that incorporates the shielding by two parallel metal plates. They allow computing the energy loss of different particles in the beam.
* E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov. NIMA v. 398, p. 373 (1997).
** G. Stupakov and P. Emma. In: Proceedings of 8th EPAC. Paris, France, 2002, p. 1479.
 
poster icon Poster TUPAB264 [0.661 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB264  
About • paper received ※ 10 May 2021       paper accepted ※ 25 June 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB320 Physical Design of the Radiation Shielding for the CMS Experiment at LHC radiation, simulation, detector, experiment 2246
 
  • I.L. Azhgirey, I.A. Kurochkin, A.D. Riabchikova
    IHEP, Moscow Region, Russia
  • D. Bozzato, A.E. Dabrowski, S. Mallows
    CERN, Meyrin, Switzerland
 
  The design of the radiation shielding for the CMS experiment at the LHC requires a simulation of the radiation environment using a model of the CMS experimental setup, accelerator components and the experimental hall infrastructure. The radiation simulations are used to optimise the design of the CMS detectors components and also the interface of the CMS detector with LHC accelerator. The Beam Radiation Instrumentation and Luminosity Project of CMS is responsible for giving important input into the optimisation and upgrade of radiation shielding used in CMS and also the radiation environment simulations software infrastructure. This contribution describes the organization of this work, the simulation software environment used for this part of CMS experiment activity and recent radiation simulation results used to optimise the forward shielding for CMS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB320  
About • paper received ※ 19 May 2021       paper accepted ※ 16 June 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB323 Modular Type Quick Splicing Method for TPS Beamline Radiation Shielding Hutch radiation, synchrotron, scattering, neutron 2252
 
  • C.Y. Chang, C.H. Chang, S.H. Chang, C.L. Chen, Y.C. Lin, J.C. Liu, D.G. Liu, H.Y. Yan
    NSRRC, Hsinchu, Taiwan
 
  The synchrotron light source is transported to the experimental station through a beamline with specified optics, such as mask, mirror, slit, monochromator. Generally, standard beamline should use solid materials (stainless steel, tungsten, lead, and PE) to block bremsstrahlung and synchrotron radiations, even the neutron. The radiation-shielded hutch surrounds the peripheral area of the beamline with iron and lead panels. It requires blocking the scattering radiation to protect the person against radiation hazards. A modularized radiation shielding hutch includes the frame, wall, and ceiling cover that can assemble on-site through splicing. This method could greatly shorten the installation. Besides, we designed the modular ceiling cover units with a quick mounting/opening function to easily enable the maintenance and installation of large optical components. The details of the concept design for the fixed-point radiation shielding hutch in the TPS beamline are also reported that includes the configurations of the radiation shielding wall panels, frames, and pipes/cables arrangements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB323  
About • paper received ※ 13 May 2021       paper accepted ※ 10 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB340 Design of the Magnetic Shielding for 166 MHz and 500 MHz Superconducting RF Cavities at High Energy Photon Source cavity, simulation, photon, superconducting-cavity 2289
 
  • L. Guo, Y. Chen, J. Li, Z.Q. Li, Q. Ma, P. Zhang, X.Y. Zhang, H.J. Zheng
    IHEP, Beijing, People’s Republic of China
 
  Funding: This work was supported by High Energy Photon Source, a major national science and technology infrastructure in China.
Five 166 MHz quarter-wave β=1 superconducting cavities and two 500 MHz single-cell elliptical superconducting cavities have been designed for the storage ring of High Energy Photon Source (HEPS). It is necessary to shield magnetic field for superconducting cavities to reduce the residual surface resistance due to magnetic flux trapping during cavity cool down. The magnetic shielding for both 166 MHz and 500 MHz superconducting cavities have been designed. The residual magnetic field inside the cavities have been calculated by using Opera-3D simulation software. The geographic location of the cavity being installed at the HEPS site and the fringe field of the upstream magnet are considered. These are reported in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB340  
About • paper received ※ 18 May 2021       paper accepted ※ 17 June 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB404 Monte Carlo Studies for Shielding Design for High Energy Linac for Medical Isotope Generation neutron, photon, radiation, target 2469
 
  • N. Upadhyay, S. Chacko
    University of Mumbai, Mumbai, India
  • A.P. Deshpande, T.S. Dixit, P.S. Jadhav, R. Krishnan
    SAMEER, Mumbai, India
 
  The widely used radioactive tracer Technetium-99m (99mTc) is traditionally produced from Uranium via 235U (n, f) 99Mo reactions which depends heavily on nuclear reactors. Design studies for an alternative, cleaner approach for radioisotope generation using a high energy electron linac were initiated at SAMEER to generate 99Mo. The electron beam from a 30 MeV linac with an average current of 350 µA will be bombarded on a convertor target to produce X-rays which will be bombarded on enriched 100Mo target to produce 99Mo via (g, n) reaction. 99mTc will be eluted from 99Mo. The photons and neutrons produced in the process should be shielded appropriately to ensure radiation safety. This paper brings out the use of Monte Carlo techniques for photon and neutron shielding for our application. We used FLUKA to calculate the fluence, angular distribution and dose for photons and neutrons. Then, we introduced various layers of lead followed by HDPE, 5% borated HDPE and 40% boron rubber to ensure that the proposed shielding is sufficient to completely shield the photon as well as neutron radiation and hence is safe for operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB404  
About • paper received ※ 19 May 2021       paper accepted ※ 22 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB166 Concept of an Accelerator-Driven Neutron Source for the Production of Atmospheric Radiations neutron, target, proton, radiation 2998
 
  • P. Lee, N.-W. Kang
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
  • M. Moon
    KAERI, Daejon, Republic of Korea
 
  Funding: This work has been supported through KOMAC operation fund of KAERI and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1C1C1007100).
At the Korea Multi-purpose Accelerator Complex (KOMAC) of Korea Atomic Energy Research Institute (KAERI), we are studying an accelerator-driven neutron source for the production of white neutron beams that resemble the atmospheric radiations on the earth. In the concept of the neutron source, high-energy neutrons are generated by using a 200-MeV proton beam on a heavy-metal target in a target station, which is consisted of a target, moderator, reflector, and biological shields, and a part of the high-energy neutrons are guided in a forward direction to make neutron beams with the atmospheric-like energy spectrum. The conceptual design has 6 more thermal-neutron beamlines at the separation of 30 degrees for the fundamental research on neutron science. Here, we present the concepts of the target station and basic parameters regarding the neutron source.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB166  
About • paper received ※ 18 May 2021       paper accepted ※ 01 July 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB179 Recent Status of J-PARC Rapid Cycling Synchrotron operation, synchrotron, injection, proton 3027
 
  • K. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The 3 GeV rapid cycling synchrotron (RCS) at the Ja-pan Proton Accelerator Research Complex (J-PARC) provides more than 500 kW beams to the Material and Life Science Facility (MLF) and Main Ring (MR). In such a high-intensity hadron accelerator, even losing less than 0.1% of the beam can cause many problems. Such lost protons can cause serious radio-activation and accelerator component malfunctions. Therefore, we have been continuing a beam study to achieve high-power operation. In addition, we have also improved and maintained the accelerator components to enable stable operation. This paper reports the status of the J-PARC RCS over the last two years.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB179  
About • paper received ※ 13 May 2021       paper accepted ※ 25 June 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB194 Feasibility of Using the Existing RHIC Stripline BPMs for the EIC simulation, impedance, hadron, site 3077
 
  • M.P. Sangroula, C. Liu, M.G. Minty, P. Thieberger
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The design of the Electron-Ion Collider (EIC) at Brookhaven National Laboratory (BNL) will utilize portions of the existing Relativistic Heavy Ion Collider (RHIC) for the EIC hadron ring. The EIC design calls for up to 10-times shorter ion bunches compared to the present RHIC operation. Higher single bunch peak currents will result in higher voltages to the output ports of the BPMs consequently producing more heating of the cryogenic signal cables connected to these output ports. Therefore, the existing stripline BPMs should be either upgraded or replaced with new ones. In this paper, we explore the potentially cost-effective approach by incorporating an RF-shielding piece into the existing BPMs as opposed to replacing them completely. Starting with the power delivered to the output ports, we present the proposed BPM modification with the RF-shielding piece. Then we discuss in detail the RF-shielding piece geometry including the dimension of RF slot and RF-fingers configuration. Finally, we present the optimization of the shielding piece and the mechanical tolerances required for its fabrication.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB194  
About • paper received ※ 21 May 2021       paper accepted ※ 28 June 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB249 Model of Curvature Effects Associated with Space Charge for Long Beams in Dipoles space-charge, vacuum, dipole, emittance 3217
 
  • C.E. Mitchell, K. Hwang, R.D. Ryne
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
For modeling the dynamics within a dipole of a bunch whose length is much larger than the vacuum pipe radius, it is typical to use a 2D (or 2.5D) Poisson solver, with arc length taken as the independent variable. However, sampled at a fixed time, the beam is curved, space charge is not truly 2D, and the usual cancellation between E and B contributions to the Lorentz force need not exactly hold. The size of these effects is estimated using an idealized model of a uniform torus of charge rotating inside a toroidal conducting pipe. Simple expressions are provided for the correction of the electric and magnetic fields to first order in the reciprocal of the curvature radius.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB249  
About • paper received ※ 19 May 2021       paper accepted ※ 02 July 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB214 Recent BDSIM Related Developments and Modeling of Accelerators laser, simulation, experiment, radiation 4208
 
  • L.J. Nevay, A. Abramov, S.E. Alden, S.T. Boogert, G. D’Alessandro, S.M. Gibson, H. Lefebvre, W. Shields, S.D. Walker
    JAI, Egham, Surrey, United Kingdom
  • A. Abramov, G. D’Alessandro, C. Hernalsteens
    CERN, Meyrin, Switzerland
  • E. Gnacadja, C. Hernalsteens, E. Ramoisiaux, R. Tesse
    ULB, Bruxelles, Belgium
  • S. Liu
    DESY, Hamburg, Germany
 
  Funding: This work is supported by the STFC (UK) grants: JAI ST/P00203X/1, HL-LHC-UK1 ST/N001583/1, HL-LHC-UK2 ST/T001925/1, and ST/P003028/1.
Beam Delivery Simulation (BDSIM) is a program based on Geant4 that creates 3D radiation transport models of accelerators from a simple optical description in a vastly reduced time frame with great flexibility. It also uses ROOT and CLHEP to create a single simulation model that can accurately track all particle species in an accelerator to predict and understand beam losses, secondary radiation, dosimetric quantities and their origin. BDSIM provides a library of scalable generic geometry for a variety of applications. Our Python package, Pyg4ometry, allows rapid preparation and conversion of geometries for BDSIM and other radiation transport simulations including FLUKA. We present a broad overview of BDSIM developments related to a variety of experiments at several facilities. We present a model of the forward experiment FASER at the LHC, CERN where the geometry is composited from multiple sources using Pyg4ometry. The analysis of particle history is presented as well as production mechanisms. We also present the application of recently introduced laser interactions in Geant4 to Compton photons from a laserwire diagnostic at the ATF2.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB214  
About • paper received ※ 20 May 2021       paper accepted ※ 19 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)