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Abstract 
We report on the development of machine learning mod-

els for classifying C100 superconducting radio-frequency 
(SRF) cavity faults in the Continuous Electron Beam Ac-
celerator Facility (CEBAF) at Jefferson Lab. Of the 
418 SRF cavities in CEBAF, 96 are designed with a digital 
low-level RF system configured such that a cavity fault 
triggers recordings of RF signals for each of the eight cav-
ities in the cryomodule. Subject matter experts analyze the 
collected time-series data and identify which of the eight 
cavities faulted first and classify the type of fault. This in-
formation is used to find trends and strategically deploy 
mitigations to problematic cryomodules. However, manu-
ally labeling the data is laborious and time consuming. By 
leveraging machine learning, near real-time – rather than 
post-mortem – identification of the offending cavity and 
classification of the fault type has been implemented. We 
discuss performance of the machine learning models dur-
ing a recent physics run. We also discuss efforts for further 
insights into fault types through unsupervised learning 
techniques, and present preliminary work on cavity and 
fault prediction using data collected prior to a failure event.  

INTRODUCTION 
The Continuous Electron Beam Accelerator Facility 

(CEBAF) at Jefferson Lab is a continuous-wave recirculat-
ing linac [1]. In September 2017 CEBAF completed an en-
ergy upgrade to extend its energy reach from 6 GeV to 
12 GeV. To meet this milestone, 88 newly designed cavi-
ties (representing 11 cryomodules) were installed. Each 
cryomodule (comprised of eight 7-cell cavities) is capable 
of 100 MV energy gain and is regulated with an associated 
digital low-level RF system (LLRF). These are known as 
the C100 cryomodules. In order to better understand the 
nature and frequency of C100 cavity faults, a data acquisi-
tion system was implemented to record data for off-line 
analysis. For every C100 cavity trip, the system automati-
cally records RF signals from each of the 8 cavities in the 
cryomodule (see Fig. 1). The recorded time-series data al-
lows subject matter experts to analyze the data off-line. 
Specifically, each event receives two labels; (1) the cavity 
which went unstable first and (2) the type of fault. This 
kind of labelled data permits the use of supervised, ma-
chine learning (ML) models for classification. Near real-

time identification of the offending cavity and classifica-
tion of the fault type would give operations valuable feed-
back for corrective action planning [2]. Additionally, post-
run analysis using the aggregate statistics and breaking 
down faults according to cryomodule and cavity provides 
data-driven guidance for maintenance and/or upgrades. 

 

 
Figure 1: Example waveforms for a microphonics-induced 
fault. The plots display the forward power (top left), detune 
phase angle (top right), a digital signal proportional to the 
drive voltage (bottom left), and the measured gradient (bot-
tom right). (Only four of the eight cavities are plotted for 
clarity.) 

CAVITY FAULT CLASSIFICATION 
Machine learning is particularly well suited for applica-

tions requiring pattern recognition. The problem we are 
seeking to solve is time-series classification. And because 
we have labelled examples to train the model, this repre-
sents a class of supervised learning. In this section we 
briefly outline how the models were developed. 

Supervised Learning: Machine Learning 
The primary challenge for machine learning applications 

utilizing time-series data is feature extraction, in which sta-
tistical parameters (or features) are computed from the raw 
data signals. These features serve as an intermediate repre-
sentation of the data and are used as model inputs. In order 
to reduce the computational load, features are computed for 
only 4 of the 17 recorded RF signals per cavity. These in-
termediate representations could be simple statistics such 
as mean and variance, skewness, kurtosis, largest peak and 
number of zero crossing. More descriptive features such as 
autoregressive coefficients, among others, may be required 
to obtain a more discriminatory representation of data. For 
our models we computed 6 autoregressive coefficients for 
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each of the 4 waveforms for every cavity in the cryomod-
ule. A single fault event is then represented by a vector of 
length 192 (6 coefficients × 4 waveforms/cavity × 8 cavi-
ties/cryomodule). Note, that in an effort to make data Find-
able, Accessible, Interoperable and Reusable (FAIR) [3], 
the feature matrix (2,375 instances × 192 features/instance) 
and associated cavity identification and fault classification 
labels used in this publication are publicly available [4]. 

Prior to training we split the labelled events into a train 
(70%) and test (30%) set with stratification to ensure that 
the train and test sets have approximately the same percent-
age of samples of each target class as the complete set. We 
withhold the test data as the unseen data that we use for the 
final model evaluations. A variety of classification models 
from the scikit-learn [5] library were trained, including en-
semble models such as the Bagging Classifier, Random 
Forest, Extra Trees and Gradient Boosting. Ensemble 
methods are a machine learning technique that combines 
several base models in order to produce one optimal pre-
dictive model [6]. The basic idea is to combine the predic-
tive power of many “weak learners” and in doing so the 
error can be dramatically reduced. For each model we use 
k-fold cross-validation to estimate the performance, ensur-
ing the test data remains untouched. Results for the fault 
classification model are shown in Fig. 2. The Random For-
est Classifier was chosen to model both the cavity identifi-
cation and fault classification because of its good perfor-
mance but also for its robustness against overfitting (the 
inability of a model to generalize learning to data outside 
the training set). Table 1 summarizes the results and indi-
cates that overfitting is avoided. 
 

 
Figure 2: Boxplots showing accuracy scores from a tenfold 
cross-validation analysis of several algorithms for cavity 
fault classification. The blue line denotes the median, the 
box spans the interquartile range (IQR), and the upper 
(lower) whiskers indicate values 1.5 × IQR above (below) 
the upper (lower) box boundary with data beyond the 
whiskers represented as open markers. Ensemble models 
(four rightmost boxplots) exhibit the best performance. 

Table 1: Cross-validation (CV) and Accuracy Scores for 
Each Random Forest Model. The Accuracy Scores Were 
Generated by Applying the Model on the Withheld Test 
Data Set 

 Cavity 
Identification 

Fault  
Classification 

10-fold CV (%) 88.0 ± 1.8 85.5 ± 3.7 
Accuracy (%) 88.0 87.7 

 

Deployed Performance  Machine learning models were 
deployed online and used to analyze C100 cavity fault 
events from March 10 to March 24, 2020 (until CEBAF 
operations ended prematurely due to COVID-19). During 
that two-week period 312 fault events were labelled by the 
machine learning models as well as a subject matter expert 
(SME). The models identified the first cavity to fault and 
the type of fault with accuracies of 84.9% and 78.2%, re-
spectively. The performance of the cavity identification 
model is consistent with the performance metrics in Ta-
ble 1, however, the fault classification model underper-
forms. The models correctly predicted both the cavity and 
fault for 73.1% of the cases. 
 

Visualization In order for the ML models to be effec-
tive the information they provide must be communicated 
clearly and concisely. Care was taken to create a visual in-
terface for operators and SMEs that provides both spatial 
and temporal information about cavity faults. A screenshot 
is shown in Fig. 3 where the top plot is a timeline of cavity 
faults color-coded by type and where vertical position de-
notes cavity number (for a given cryomodule), while the 
lower plot shows a heatmap of faults versus cavity labels 
(for a given cryomodule). 

Supervised Learning: Deep Learning 
Deep learning is a sub-field of machine learning which 

is based on learning successive layers of increasingly 
meaningful representations of the data. The primary ad-
vantage of methods based on learning data representations 
is that it avoids the computationally costly feature extrac-
tion step.  

A neural network that contains one or more feedback 
connections among neurons is known as a recurrent neural 
network (RNN) and is often used in conjunction with se-
quences of data. Generic recurrent neural networks face a 
known problem of vanishing gradient problem over time, 
similar to the vanishing gradient problem that occurs over 
depth of a deep network architecture [7]. The long short-
term memory (LSTM) unit is developed to address the van-
ishing error signal, with the introduction of memory gates 
that control the flow of context over time [8]. 

One of the model architectures investigated uses 
32 time-series signals as inputs (4 time-series/cavity × 
8 cavities) down sampled to 256 time steps. The model 
contains 3 LSTM layers each with 64 feature dimensional-
ity at the front end for time-series feature learning. The 
LSTMs are designed with the ability to learn both long-
term and short-term temporal features. The back end of the 
model is a branched architecture with multiple feed-for-
ward neural layers to enable simultaneous learning of both 
cavity and fault identification tasks. The features learned 
by LSTMs are shared among the two paths to perform both 
tasks in a computationally efficient manner. Results with 
this model yield test accuracies for cavity identification 
and fault classification of 87.7% and 81.3%, respectively. 
We note in passing that several convolutional neural net-
work (CNN) architectures were also investigated, some of 
which yielded comparable performance to the RNN [9]. 
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Figure 3: Screenshot of the interactive dashboard created to communicate results of the cavity fault classifier. The top 
plot is a timeline where markers represent fault events and are color-coded according to fault type and their vertical 
position denotes the cavity that faulted first. The bottom plot is a heatmap showing the frequency of faults in cavities for 
a specific cryomodule (1L23). 

Uncertainty Quantification    Before operators take ac-
tion based on information from a ML model, we need a 
measure of confidence of the model’s prediction. Monte 
Carlo dropout is a method that provides uncertainty quan-
tification in deep learning models and can be implemented 
in a straightforward way [10]. Dropout is a popular regu-
larization method used to avoid overfitting. The idea is to 
randomly disable some connections in the network for each 
training example, thereby allowing the model to generalize 
better. Typically, dropout is only applied during training, 
whereas in Monte Carlo dropout, it is applied at both train-
ing and test time. Consequently, at test time the prediction 
is no longer deterministic, since random nodes are being 
disabled. That is, given the same input, the model predicts 
slightly different values each time. The result of Monte 
Carlo dropout is to generate random predictions and to in-
terpret them as samples from a probabilistic distribution. 
Figure 4 displays uncertainty quantification results for a 
fault classification model. Note that a majority of the con-
fidence values are close to 1 when the model agrees with 
the ground truth whereas there are a significant fraction of 
events with confidence below 0.7 when the model disa-
grees the ground truth. 

 
Figure 4: Violin plots comparing the distribution of the 
mean confidence values when the model agrees with the 
ground truth labels (bottom) and when the model disagrees 
(top) when applied to a test set containing 759 samples. 

Unsupervised Learning 
Data in supervised learning tasks consists of input-out-

put pairs. The goal of supervised machine learning is to 
learn the mapping between inputs and outputs such that it 
can generalize and make inferences on unseen data. The 
goal of unsupervised learning is to analyze the features (of-
ten without regard for the labels) in order to find patterns 
or underlying structure in the dataset. Within unsupervised 
learning, there are two common applications; dimensional-
ity reduction and clustering. We focus on the former. The 
dimensionality of a dataset describes the number of fea-
tures needed to describe it. Dimensionality reduction pro-
vides a means of compressing the features into a lower di-
mensional space. One primary reason for doing this is to 
allow for two-dimensional visualizations. For this work we 
use the t-Distributed Stochastic Neighbor Embedding 
(t-SNE) algorithm [11]. This kind of analysis has yielded 
interesting insights into the data. See, for example, Fig. 5 
which shows the result of applying t-SNE to only fault 
types labelled by the SME as “single cavity turn offs”. Note 
the distinct cluster that represents events from one particu-
lar cavity in cryomodule 1L23 and is separated from the 
larger, more uniformly populated cluster. A closer exami-
nation of the raw data, in particular the frequency content 
of the signals, revealed that the 1L23 events exhibited 
50 Hz microphonics from an unknown source, whereas mi-
crophonic frequencies in the other cryomodules had con-
tent at rough 0, 20, 40, and 90 Hz with peak values that are 
generally 2 to 4 times larger. This may be due to the fact 
that the IL23 cavities were a low loss cell shape which is 
more sensitive to microphonics. Another motivation for us-
ing unsupervised learning techniques is to identify fault 
types. At present, a SME determines the fault classes. 
Therefore, when presented with unfamiliar patterns in the 
data, it raises the question of whether it is a variant of a 
known fault type or if it represents something completely 
new. Invoking dimensionality reduction techniques and 
then applying clustering algorithms may provide a data-

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-FRXC01

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T03 Beam Diagnostics and Instrumentation

FRXC01

4537

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



driven method for identifying the number of fault types 
represented in the data, and potentially reveal new fault 
types. 
 

 
Figure 5: t-SNE visualization of all “single cavity turn off” 
fault types. The events originating in cavity 3 of cryomod-
ule 1L23 comprise a separate cluster. The difference was 
traced to the frequency response of this cavity due to a dif-
ferent cell shape compared to the other events. 

CAVITY FAULT PREDICTION 
Initial studies suggest machine learning can extract in-

formation in the signals preceding the fault for predic-
tion [12]. A natural evolution of the work outline in the pre-
vious section is to develop a data pipeline, workflow, and 
models to stream continuous C100 RF data and provide 
real-time predictions for impending faults. This represents 
a critical step towards developing systems that could antic-
ipate and then apply corrective actions to avoid the fault. 

Binary Classifier 
As a preliminary study, a dataset was constructed using 

a 100 ms window of time-series data immediately before a 
fault (labelled “unstable”) and at 1.5 seconds prior to a fault 
(labelled “stable”) gathered from over 5,000 saved fault 
events. The data was used to train a binary classifier. Initial 
accuracy was very poor (74%) with a large number of false 
negatives (i.e. the model incorrectly identifies “unstable” 
data as “stable”). After discussions with a domain expert, 
it was discovered that several fault types have no precur-
sors – in our data – that a trip will occur. For these faults, 
ancillary data is oftentimes used to determine the type. Af-
ter removing instances of faults without precursors, the bi-
nary classifier was re-trained and achieved over 92% accu-
racy. In addition to providing key insights into the behavior 
of several fault types, the study provided motivation to in-
vestigate whether data prior to a failure event could also 
predict the type of fault.  

Fault Type Prediction 
For this study, a window of a specified length slides over 

the data starting from the 1.5 second prior to the fault up to 
the fault itself (t = 0 seconds). At regular intervals a deep 
learning model is trained using the window of data and the 
known fault type label. Figure 6 shows the accuracy of 

these models plotted as function of the time prior to a mi-
crophonics initiated faults. Initial results suggest that time-
scales may be favorable in allowing a deep learning model 
to anticipate several kinds of faults and deploy mitigation 
measures. There is therefore strong motivation to continue 
research into this area. While the direct impact to Jefferson 
Lab, and CEBAF in particular, is constrained by existing 
cavity and control system designs, this work has the poten-
tial for future SRF-driven accelerator facilities. 

 

 
Figure 6: F1-scores [13] of a fault classification model for 
predicting a microphonics-based event using a window of 
data as a function of time prior to the fault event (t = 0).  

LESSONS LEARNED 
The success of all the models discussed in this paper is a 

direct consequence of collecting the appropriate data. The 
importance of having the right data, at the right time cannot 
be overemphasized. This would not have been possible 
without the capabilities of a digital LLRF system, together 
with a specially developed data acquisition system. Our ex-
perience suggests that for the potential of machine learning 
to be fully realized at accelerator facilities, revisiting how 
and when data is recorded may be required. In addition to 
collecting information-rich data, an equally important con-
tribution is the process of exploring and manually labeling 
the data. Although time consuming, having a willing and 
able “data labeler” is critical. We also discovered that mod-
els struggle precisely where the subject matter expert strug-
gles. This is not surprising. If a SME is confused about cer-
tain kinds of events, it will manifest itself in the training 
data and consequently, what the model learns. 

SUMMARY 
We have described an implementation of machine learn-

ing models at CEBAF to automate the task of classifying 
C100 SRF cavity faults providing, for the first time, that 
information in near real-time. Operators and system ex-
perts alike, will utilize the information presented to look 
for trends over time that would necessitate a change in a 
cavity or cavities. Recent modifications to the LLRF sys-
tem will provide access to streaming signals in the near fu-
ture, providing an opportunity to adapt machine learning 
models to streaming data and predict faults before they oc-
cur (see Fig. 7). 
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Figure 7: Schematic showing the data flow for a deep 
learning model with a continuously streaming input. A 
small portion of the streaming data is sent to storage for 
off-line analysis. 
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