Keyword: site
Paper Title Other Keywords Page
MOPAB162 The First Trial of XY-Coupled Beam Phase Space Matching for Three-Dimensional Spiral Injection injection, coupling, experiment, solenoid 553
 
  • M.A. Rehman, K. Furukawa, H. Hisamatsu, T. Mibe, H. Nakayama, S. Ohsawa, N. Saito, K. Sasaki
    KEK, Ibaraki, Japan
  • H. Hirayama, H. Iinuma, K. Oda
    Ibaraki University, Ibaraki, Japan
  • R. Matsushita
    The University of Tokyo, Graduate School of Science, Tokyo, Japan
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Funding: Work supported by "Grant in Aid" for Scientific Research, JSPS (KAKENHI# 26287055, KAKENHI#19H00673)
The most recent measurement of muon g-2 results in a 3.8σ discrepancy with the equally precise theoretical prediction. The J-PARC muon g-2/EDM experiment (E34) is in preparation to decipher this discrepancy and unravel the new physics beyond the standard model. The precision goal for g-2 is 0.1 ppm. To achieve this precision goal a novel 3-D spiral injection scheme has been devised to inject and store the beam into a small diameter MRI-type storage magnet for E34. The new injection scheme features smooth injection with high storage efficiency for the compact magnet. However, the spiral injection scheme is an unproven idea, therefore, a Spiral Injection Test Experiment (SITE) at KEK Tsukuba Campus is underway to establish this injection scheme. Due to the axial symmetric field of the solenoid magnet, a strongly XY-coupled beam is required. To produce the required phase space for the solenoid-type storage magnet, a beam transport line consisting of three rotatable quadrupole magnets has been designed and built for SITE. The vertical beam size reduction by means of phase space matching and other geometrical information has been successfully measured by the wire scanners.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB162  
About • paper received ※ 20 May 2021       paper accepted ※ 28 May 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB346 Broadband Frequency Electromagnetic Characterisation of Coating Materials GUI, experiment, electron, vacuum 1076
 
  • A. Passarelli, C. Koral, M.R. Masullo
    INFN-Napoli, Napoli, Italy
  • A. Andreone
    Naples University Federico II, Napoli, Italy
  • M. De Stefano
    University of Naples, Naples, Italy
  • V.G. Vaccaro
    Naples University Federico II and INFN, Napoli, Italy
 
  In the new generation of particle accelerators and storage rings, collective effects have to be carefully analyzed. In particular, the finite conductivity of the beam pipe walls is a major source of impedance and instabilities. A reliable electromagnetic (EM) characterisation of different coating materials is required up to hundreds of GHz due to very short bunches. We propose two different measurement techniques for an extended frequency characterization: (i) a THz time domain setup based on the signal transmission response of a tailored waveguide to infer the coating EM properties from 100 to 300 GHz or even further*.**. This technique has been tested both on NEG and amorphous Carbon films. (ii) a resonant method, based on dielectric cavities, to evaluate the surface resistance Rs of thin conducting samples at low (GHz) frequencies***. Due to its high sensitivity, Rs values can be obtained for very thin (nanometric) coatings or for copper samples with a laser treated surface, since they have an expected conductivity very close to bulk copper.
*A. Passarelli et al., Phys. Rev. Accel. Beams, v.21, p.103101, 2018
**A. Passarelli et al., Cond. Matter, v.5, p.9, 2020
***A. Andreone et al., Applied Physics Letters, v.91, n.7, p.072512, 2007
 
poster icon Poster MOPAB346 [2.613 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB346  
About • paper received ※ 18 May 2021       paper accepted ※ 09 June 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB401 In-Situ EXAFS Investigations of Nb-Treatments in N2, O2 and N2-O2 Mixtures at Elevated Temperatures vacuum, experiment, niobium, cavity 1214
 
  • P. Rothweiler, B. Bornmann, J. Klaes, D. Lützenkirchen-Hecht, R. Wagner
    University of Wuppertal, Wuppertal, Germany
 
  Funding: We gratefully acknowledge financial support by the German Federal Ministry of Education and Research (BMBF) under project No. 05H18PXRB1.
Smooth polycrystalline Nb metal foils were treated in dilute gas atmospheres using a temperature of 900 °C. Transmission mode X-ray absorption spectroscopy (EX-AFS) at the Nb K-edge was used to investigate changes in the atomic short-range order structure of the bulk Nb-material in-situ. The experiments were performed in a dedicated high-vacuum cell that allows treatments in a dilute gas atmosphere and temperatures of up to 1200 °C. Typical treatments include (i) pre-heating at 900 °C under high-vacuum, (ii) gas exposure at the desired pressure and temperature, and (iii) cooldown to room temperature under vacuum. EXAFS data were collected during the entire procedure with a time resolution of 1 s. For the treatments in N2 at T = 900°C, the data show subtle changes in the Nb-EXAFS, that are compatible with N-doping of the bulk Nb, and the results suggest Nb uptake on octahedral interstitial sites. However, even a small O2-partial pressure leads to distinct oxidation of the Nb. The results will be discussed in more detail in the presentation.
 
poster icon Poster MOPAB401 [2.032 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB401  
About • paper received ※ 19 May 2021       paper accepted ※ 26 May 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB034 Development of Multi-Alkali Antimonides Photocathodes for High-Brightness RF Photoinjectors cathode, electron, emittance, laser 1416
 
  • S.K. Mohanty, M. Krasilnikov, A. Oppelt, H.J. Qian, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • G. Guerini Rocco, C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • P. Michelato, L. Monaco, D. Sertore
    INFN/LASA, Segrate (MI), Italy
 
  Multi-alkali antimonide-based photocathodes are suitable candidate for the electron sources of next-generation high brightness RF photoinjectors due to their excellent photoemissive properties especially, like low thermal emittances and high sensitivity to visible light. The former stands out, paving the way towards CW operations. Based on the previous successful development of Cesium Telluride photocathodes, we are now channelling our efforts toward an R&D activity focused on KCsSb and NaKSb(Cs) photocathodes. Parallel to that R&D activity, we have installed a new dedicated photocathode production system at the INFN-LASA to start the preparation of these photocathodes for their test in the PITZ photoinjector at DESY in Zeuthen. In this paper, detailed experimental results obtained from the KCsSb, along with a preliminary result from the NaKSb(Cs) photocathode material as well as the status of the overall project are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB034  
About • paper received ※ 19 May 2021       paper accepted ※ 21 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB193 Operation and Maintenance of Chinese Spallation Neutron Source Stripper Foil operation, injection, neutron, radiation 1858
 
  • J.X. Chen, X.J. Nie, A.X. Wang, Y.J. Yu
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • L. Kang, L. Liu
    IHEP, Beijing, People’s Republic of China
  • J.B. Yu
    DNSC, Dongguan, People’s Republic of China
 
  Funding: The project is supported by the National Natural Science Foundation of China (Grant No.11975253) and Natural Science Foundation of Guangdong Province (Grant No.2018A030313959)
The stripper foil system is the essential equipment of the spallation neutron source to achieve negative hydrogen injection. More than 99% of negative hydrogen ions complete the charge stripper in the primary stripper foil during the injection process. The remaining ions will lead to the in-dump after the secondary foil or absorbed by the negative hydrogen scraper. This paper introduces some work records of operation and maintenance of stripper foil system.
stripper foil, maintenance, operation
 
poster icon Poster TUPAB193 [0.395 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB193  
About • paper received ※ 12 May 2021       paper accepted ※ 11 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB267 Investigation of Beam Impedance and Heat Load in a High Temperature Superconducting Undulator undulator, impedance, laser, simulation 2089
 
  • D. Astapovych, H. De Gersem, E. Gjonaj
    TEMF, TU Darmstadt, Darmstadt, Germany
  • T.A. Arndt, E. Bründermann, N. Glamann, A.W. Grau, B. Krasch, A.-S. Müller, R. Nast, D. Saez de Jauregui, A. Will
    KIT, Eggenstein-Leopoldshafen, Germany
 
  The use of high temperature superconducting (HTS) materials can enhance the performance of superconducting undulators (SCU), which can later be implemented in free electron laser facilities, synchrotron storage rings and light sources. In particular, the short period < 10 mm undulators with narrow magnetic gap < 4 mm are relevant. One of the promising approaches considers a 10 cm meander-structured HTS tapes stacked one above the other. Then, the HTS tape is wound on the SCU. The idea of this jointless undulator has been proposed by, and is being further developed at KIT. Since minimizing the different sources of heat load is a critical issue for all SCUs, a detailed analysis of the impedance and heat load is required to meet the cryogenic system design. The dominant heat source is anticipated to be the resistive surface loss, which is one of the subjects of this study. Considering the complexity of the HTS tape, the impedance model includes the geometrical structure of the HTS tapes as well as the anomalous skin effect. The results of the numerical investigation performed by the help of the CST PS solver will be presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB267  
About • paper received ※ 18 May 2021       paper accepted ※ 26 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB314 SPS Personnel Protection System: From Design to Commissioning controls, operation, MMI, PLC 2224
 
  • T. Ladzinski, T. Hakulinen, F. Havart, V. Martins De Sousa Dos Rios, M. Munoz Codoceo, P. Ninin, J.P. Ridewood, E. Sanchez-Corral Mena, D. Vaxelaire
    CERN, Meyrin, Switzerland
 
  During the second long shutdown (LS2) of the accelerator complex at CERN, the access system of the Super Proton Synchrotron (SPS) was completely renovated. This complex project was motivated by the technical obsolescence and lack of sufficient redundancy in the existing system, as well as by the need for homogenisation of technologies and practices across the different machines at CERN. The new Personnel Protection System includes 16 state-of-the-art access points making sure that only fully identified, trained and authorised personnel can enter the facility and an interlock system with a rationalized number of safety chains designed to meet the current safety standards. The control part is based on Siemens 1500 series of programmable logic controllers, complemented by a technologically diverse relay logic loop for the critical safety functions. This paper presents the new system and the design choices made to permit fast installation in a period where the access system itself was heavily used to allow vast upgrades of the SPS accelerator and its infrastructure. It also covers the verification and validation methodology and lessons learned during the commissioning phase.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB314  
About • paper received ※ 14 May 2021       paper accepted ※ 10 June 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB322 Redesign and Upgrade of the LHC Access Control System controls, interface, hardware, PLC 2249
 
  • T. Hakulinen, S. Di Luca, G. Godineau, R. Nunes, G. Smith
    CERN, Meyrin, Switzerland
 
  The old LHC Access Control System (LACS) was based on a single access control solution, which integrated software and hardware into one monolithic application encompassing all the different subsystems (access control, video surveillance, interphones, biometry, equipment control, safety elements). Both the hardware and software were approaching end-of-life by the vendor before the CERN Long Shutdown 2 (LS2). The new design is based on a distributed approach, where the different subsystems are integrated in a flexible manner with well-defined interfaces, which will permit much easier single sub-system management, upgrades, and even full replacements if necessary. From the system point of view, the focus is on the advantages that this redesign brings to system operation, testing, and management. Procedurally the interest is in the overall management of a very complex in-place upgrade of a system, where the new implementation needed to coexist with the old during its constant simultaneous solicitation over the LS2.  
poster icon Poster TUPAB322 [6.906 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB322  
About • paper received ※ 15 May 2021       paper accepted ※ 28 May 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB372 Status of the Quadrupole Doublet Module Series Manfacturing quadrupole, alignment, cryogenics, synchrotron 2388
 
  • T. Winkler, A. Bleile, L.H.J. Bozyk, V.I. Datskov, J. Ketter, P. Kowina, J.P. Meier, N. Pyka, C. Roux, P.J. Spiller, K. Sugita, A. Waldt, St. Wilfert
    GSI, Darmstadt, Germany
 
  The 83 Quadrupole Doublet Modules (QDM) for the heavy-ion-synchrotron SIS100 of the FAIR project at GSI are highly integrated cryogenic modules containing multiple magnets. Each of eleven different QDM types consists of two units, where one unit consists of one quadrupole magnet as well as corrector magnets depending on the modules position in the accelerator Ion-Optical Lattice. Additionally, the QDMs contain cryogenic collimators, beam diagnostics, as well as cryogenic UHV beam pipes. The modules contain parts from multiple suppliers increasing the logistics behinds the QDMs design further. We present the process of the module integration, give details on the current integration status and present an outlook on the timeline for the QDM integration planning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB372  
About • paper received ※ 18 May 2021       paper accepted ※ 02 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXB01 The ESS Elliptical Cavity Cryomodules Production at CEA cryomodule, cavity, status, vacuum 2536
 
  • C. Madec
    CEA, Gif-sur-Yvette, France
  • C. Arcambal, S. Berry, A. Bouygues, G. Devanz, C. Mayri, P. Sahuquet, T. Trublet
    CEA-DRF-IRFU, France
  • P. Bosland, E. Cenni, C. Cloué, T. Hamelin, O. Piquet
    CEA-IRFU, Gif-sur-Yvette, France
  • P. Pierini
    ESS, Lund, Sweden
 
  CEA in Kind contribution to the ESS superconducting LINAC includes 30 elliptical medium and high-beta cryomodules. CEA is in charge of the production of all the components (except the cavities delivered by LASA and STFC) as well as the assembly of the cryomodules and a few cryogenic and RF tests. The power couplers operating at a maximum power of 1.1MW on a 3.6ms pulse at 14Hz are conditioned at high RF power on a dedicated stand. The assembly of the cryomodules is performed at CEA by a private Company under the supervision of CEA. This paper presents the status of the cryomodules production and the infrastructure dedicated to this project at CEA Saclay.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXB01  
About • paper received ※ 18 May 2021       paper accepted ※ 19 July 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB025 Collimation Strategies for Secondary Beams in FCC-hh Ion-Ion Operation secondary-beams, collider, simulation, heavy-ion 2652
 
  • J.R. Hunt, R. Bruce, F. Carra, F. Cerutti, J. Guardia, J. Molson
    CERN, Geneva, Switzerland
 
  The target peak luminosity of the CERN FCC-hh during Pb-Pb collisions is more than a factor of 50 greater than that achieved by the LHC in 2018. As a result, the intensity of secondary beams produced in collisions at the interaction points will be significantly higher than previously experienced. With up to 72 kW deposited in a localised region by a single secondary beam type, namely the one originated by Bound Free Pair Production (BFPP), it is essential to develop strategies to safely intercept these beams, including the ones from ElectroMagnetic Dissociation (EMD), in order to ensure successful FCC-hh Pb-Pb operation. A series of beam tracking and energy deposition simulations were performed to determine the optimal solution for handling the impact of such beams. In this contribution the most advanced results are presented, with a discussion of different options.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB025  
About • paper received ※ 18 May 2021       paper accepted ※ 02 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB190 DC Break Design for a 2.45 GHz ECR Ion Source GUI, ECR, high-voltage, simulation 3064
 
  • M.S. Dmitriyev, M.V. Dyakonov, S.A. Tumanov, M.I. Zhigailova
    MEPhI, Moscow, Russia
 
  New 2.45 GHz Electron Cyclotron Resonance Ion Source (ECRIS) is under development at NRNU MEPhI. The transmission line is designed for transmitting the microwave power into the ECRIS. A DC break up to 80 kV was designed for the electrical insulation between the microwave supply system and the plasma chamber applied to high DC voltage. Current study considers the investigation results as well as the optimization of numerical simulations of the 2.45 GHz DC break with low losses and low emission into the surrounding space.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB190  
About • paper received ※ 20 May 2021       paper accepted ※ 08 June 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB194 Feasibility of Using the Existing RHIC Stripline BPMs for the EIC shielding, simulation, impedance, hadron 3077
 
  • M.P. Sangroula, C. Liu, M.G. Minty, P. Thieberger
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The design of the Electron-Ion Collider (EIC) at Brookhaven National Laboratory (BNL) will utilize portions of the existing Relativistic Heavy Ion Collider (RHIC) for the EIC hadron ring. The EIC design calls for up to 10-times shorter ion bunches compared to the present RHIC operation. Higher single bunch peak currents will result in higher voltages to the output ports of the BPMs consequently producing more heating of the cryogenic signal cables connected to these output ports. Therefore, the existing stripline BPMs should be either upgraded or replaced with new ones. In this paper, we explore the potentially cost-effective approach by incorporating an RF-shielding piece into the existing BPMs as opposed to replacing them completely. Starting with the power delivered to the output ports, we present the proposed BPM modification with the RF-shielding piece. Then we discuss in detail the RF-shielding piece geometry including the dimension of RF slot and RF-fingers configuration. Finally, we present the optimization of the shielding piece and the mechanical tolerances required for its fabrication.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB194  
About • paper received ※ 21 May 2021       paper accepted ※ 28 June 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB221 H0 Stark Stripping and Component Irradiation in Fermilab Booster proton, booster, radiation, kicker 3142
 
  • J.A. Johnstone, D.E. Johnson
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under contract no. DE-AC02-07CH11359
In foil stripping of H some fraction of the emerging neutral H0 will be in excited states, which can then strip through the Stark effect in the magnetic field of the downstream orbit bump magnet. The resultant H+ will experience a depleted net kick compared to protons emerging from the foil and will track on trajectories different from the nominal circulating beam. This will lead to irradiation of downstream machine components. An analysis of these processes is of particular importance looking forward to the much higher beam power of the Fermilab PIP-II era. This study investigates where these errant protons will be lost, how much power is deposited, and whether this will be a shielding concern.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB221  
About • paper received ※ 11 May 2021       paper accepted ※ 09 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB315 360 Degree Panoramic Photographs During the Long Shutdown 2 of the CERN Machines and Facilities database, interface, experiment, HOM 3410
 
  • T.W. Birtwistle, A. Ansel, S. Bartolomé Jiménez, B. Feral, G. Lacerda, A.-L. Perrot, J.F. Piñera Ovejero
    CERN, Geneva, Switzerland
 
  Studies and preparation of activities are key to the success of short technical stops and longer shutdowns in CERN’s accelerator complex. The ’Panorama’ tool offers a virtual tour of our facilities, and thanks to integration with other CERN tools, further complementary information can be easily retrieved, including layout information, equipment detail, and a history of changes. The tool was used to support the preparation and the execution of works during the Long Shutdown 2. It helped to optimize machine (accelerator/decelerator) interventions and hence reduce potential radiation exposure, as well as to ease integration studies. Thanks to its user-friendliness, the tool is now also used for educational and outreach activities. The current instantiation of the ’Panorama’ tool and related processes is presented, alongside the benefits that the tool can bring to the accelerator complex community. A particular focus is on the Long Shutdown 2. Future planned developments and improvements are also described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB315  
About • paper received ※ 11 May 2021       paper accepted ※ 14 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB355 Series Production of the SIS100 Cryocatchers quadrupole, vacuum, cryogenics, heavy-ion 3529
 
  • L.H.J. Bozyk, S. Ahmed, P.J. Spiller
    GSI, Darmstadt, Germany
 
  The superconducting heavy ion synchrotron SIS100, which is the main accelerator of the FAIR-facility will be equipped with cryocatcher to suppress dynamic vacuum effects and to assure a reliable operation of high intensity heavy-ion beams. Subsequent to the successful validation of the prototype in 2011 as well as a First-of-Series cryocatcher, the series production of 60 cryocatcher modules meanwhile has been completed. It was released in 2018 after further design optimizations. Key findings from the series production and acceptance tests are presented as well. The First-of-Series cryocatcher has been integrated into the First-of-Series quadrupole module and has undergone several tests. These results are also illustrated in this report.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB355  
About • paper received ※ 19 May 2021       paper accepted ※ 06 July 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB380 Measurements of Field Emission Induced Optical Spectra alignment, radiation, experiment, electron 3602
 
  • R.C. Peacock, G. Burt
    Lancaster University, Lancaster, United Kingdom
  • S. Calatroni, W. Wuensch
    CERN, Meyrin, Switzerland
 
  Field emission induced optical spectra in a dc electrode system have been measured using a spectrometer and CCD camera system in order to gain insight into the nature of field emissions sites. Spectra were measured from between 2 ridged parallel copper electrodes with a gap ranging from 60µm to 100µm and a bias voltage of up to 8000V under high vacuum conditions. A strong correlation between the light intensity of the spectra and the measured field emitted current was observed as a function of applied voltage. A characteristic broadband spectrum ranging from 550nm and 850nm wavelength was observed but there were important features which varied as a function of observation angle, polarity, and conditioning state and also with time. Possible causes of the optical spectra being considered include black body radiation, optical transition radiation and cathode luminescence of copper. Further experiments are ongoing with an improved optical setup to increase optical alignment for measurements with different materials of electrodes, developing further understanding of the cause of the optical spectra, to provide understanding into characteristics and evolution of emission sites.  
poster icon Poster WEPAB380 [1.158 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB380  
About • paper received ※ 11 May 2021       paper accepted ※ 24 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB412 Use of a Noise IoT Detection System to Measure the Environmental Noise in Taiwan Light Source monitoring, real-time, network, experiment 3671
 
  • P.J. Wen, S.P. Kao, S.Y. Lin, Y.C. Lin
    NSRRC, Hsinchu, Taiwan
 
  In the past, the method of general noise monitoring altered little; noise was still measured with a human hand-held mobile device, or the measurement at fixed sites was made using traditional analogue data-storage equipment. In recent years, with the rapidly improved network transmission capabilities, the development of a small noise-detection IoT system allows the detection data to be transmitted wirelessly without need for human strength measurements, and records noise information. The statistics of subsequent noise data become a basis for analysis and improvement. Taiwan Light Source (TLS) beamlines have many vacuum pumps, cooling pumps, liquid-nitrogen pressure-relief systems, computer servers etc. that generate much noise. This study is expected to prepare for installation of noise detection. The system uses a noise-detection box to detect, to disclose louder locations, to collect noise data, to determine the source and type of noise source, and to provide information to reduce the noise of the working environment. The TLS noise-detection results find that the inner-ring area has less noise and are more stable than the outer ring area.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB412  
About • paper received ※ 14 May 2021       paper accepted ※ 24 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB016 Revisit of Nonlinear Dynamics in Hénon Map Using Square Matrix Method resonance, lattice, sextupole, dynamic-aperture 3788
 
  • Y. Hao, K.J. Anderson
    FRIB, East Lansing, Michigan, USA
  • L.H. Yu
    BNL, Upton, New York, USA
 
  Funding: Work supported by the Accelerator Stewardship program, award number DE-SC0019403 with the U.S. Department of Energy
Hénon map (2D or 4D) represents a thin lens sextupole in an otherwise linear lattice and had been well studied for many decades. We revisit the nonlinear properties of the Hénon map with the aid of the square matrix method and Arnold theorem, including acquiring the resonance structure and amplitude-dependent frequency.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB016  
About • paper received ※ 17 May 2021       paper accepted ※ 12 July 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB041 Design of Photon Masks for the ILC Positron Source photon, undulator, positron, target 3834
 
  • K.S. Alharbi, G.A. Moortgat-Pick, A. Ushakov
    University of Hamburg, Hamburg, Germany
  • K.S. Alharbi, S. Riemann
    DESY Zeuthen, Zeuthen, Germany
  • K.S. Alharbi, A.O. Alrashdi
    King Abdulaziz City for Science and Technology (KACST), The National Center for Accelerator Technology, Riyadh, Kingdom of Saudi Arabia
  • G.A. Moortgat-Pick
    DESY, Hamburg, Germany
  • P. Sievers
    CERN, Geneva, Switzerland
 
  A long superconducting helical undulator is planned as baseline to produce polarized positrons at the International Linear Collider (ILC). To protect the undulator walls from synchrotron radiation, masks must be inserted along the undulator line. The power distribution deposited at these masks is studied in order to design the photon masks.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB041  
About • paper received ※ 19 May 2021       paper accepted ※ 07 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB265 New RF BPM Electronics for the 560 Beam Position Monitors of the APS-U Storage Ring storage-ring, electron, electronics, instrumentation 4325
 
  • P. Leban, L. Bogataj, M. Cargnelutti, U. Dragonja, P. Paglovec
    I-Tech, Solkan, Slovenia
  • A.R. Brill, J. Carwardine, W.X. Cheng, N. Sereno
    ANL, Lemont, Illinois, USA
 
  Within the upgrade of the APS storage ring to a multi-bend achromat lattice, 560 RF Beam Position Monitors will be required. The projected beam sizes are below 10 microns in both horizontal and vertical planes, putting stringent requirements on the BPM electronics resolution, long-term stability, beam current dependency, and instrument reproducibility. For the APS-U project, the Libera Brilliance+ instrument has been upgraded in technology and capabilities, including the independent multi-bunch turn-by-turn processing and an improved algorithm to further reduce the crossbar-switch artifacts. More than 140 instruments, equipped with 4 BPM electronics each, are being delivered to Argonne National Laboratory, consisting of the largest scale production for Instrumentation Technologies. In this contribution, the extensive test conditions to which the instruments were exposed and their results will be presented, as well as the beam-based long-term drift measurements with different fill patterns.  
poster icon Poster THPAB265 [9.272 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB265  
About • paper received ※ 16 May 2021       paper accepted ※ 22 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB273 Spectral Reconstruction for FACET-II Compton Spectrometer photon, network, electron, positron 4346
 
  • Y. Zhuang, B. Naranjo, J.B. Rosenzweig, M. Yadav
    UCLA, Los Angeles, USA
 
  Funding: This work was supported by DOE Contract DE-SC0009914, NSF Grant No. PHY-1549132, and DARPA GRIT Contract 20204571.
The Compton spectrometer under development at UCLA for FACET-II is a versatile tool to analyze gamma-ray spectra in a single shot, in which the energy and angular position of the incoming photons are recorded by observing the momenta and position of Compton scattered electrons. We present methods to reconstruct the primary spectrum from these data via machine learning and the EM Algorithm. A multi-layer fully connected neural network is used to perform the regression task of reconstructing both the double-differential spectrum and the photon energy spectrum incident with zero angular offset. We present the expected performance of these techniques, concentrating on the achievable energy resolution.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB273  
About • paper received ※ 20 May 2021       paper accepted ※ 28 July 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB307 Behaviour of Ironless Inductive Position Sensors in Close Proximity to Each Other simulation, ECR, FEM, collimation 4390
 
  • N.J. Sammut, A. Grima
    University of Malta, Information and Communication Technology, Msida, Malta
  • M. Di Castro, A. Masi
    CERN, Meyrin, Switzerland
 
  Funding: CERN - The European Organisation for Nuclear Research UM - The University of Malta
Safety critical systems like the collimators of the Large Hadron Collider require transducers which are immune to interference from their surroundings. The ironless inductive position sensor is used to measure the position of collimator jaws with respect to the beam and is designed to be immune to external DC or slowly changing magnetic fields. In this paper we investigate whether frequency separation is required when multiple ironless inductive position sensors are used and whether two or more sensors at the same frequency results in cross-talk. Numerical simulations and experiments are conducted to study the magnetic field behaviour of the sensors, their interference with each other and the impact of this interference on the position reading. Finally, this paper defines guidelines on safe operation of the ironless inductive position sensor in the aforementioned conditions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB307  
About • paper received ※ 17 May 2021       paper accepted ※ 02 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB320 ALD-Based NbTiN Studies for SIS R&D cavity, plasma, SRF, niobium 4420
 
  • I. González Díaz-Palacio, R.H. Blick, R. Zierold
    University of Hamburg, Hamburg, Germany
  • W. Hillert, M. Wenskat
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  Superconductor-Insulator-Superconductor multilayers improve the performance of SRF cavities providing magnetic screening of the bulk cavity and lower surface resistance. In this framework NbTiN mixtures stand as a potential material of interest. Atomic layer deposition (ALD) allows for uniform coating of complex geometries and enables tuning of the stoichiometry and precise thickness control in sub-nm range. In this talk, we report about NbTiN thin films deposited by plasma-enhanced ALD on insulating AlN buffer layer. The deposition process has been optimized by studying the superconducting electrical properties of the films. Post-deposition thermal annealing studies with varying temperatures, annealing times, and gas atmospheres have been performed to further improve the thin film quality and the superconducting properties. Our experimental studies show an increase in Tc by 87.5% after thermal annealing and a maximum Tc of 13.9 K has been achieved for NbTiN of 23 nm thickness. Future steps include lattice characterization, using XRR/XRD/EBSD/PALS, and SRF measurements to obtain Hc1 and the superconducting gap.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB320  
About • paper received ※ 24 May 2021       paper accepted ※ 23 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB356 Progress and Status on Civil Construction of the SIS100 Accelerator Building controls, status, radiation, HOM 4493
 
  • M. Draisbach, N. Pyka, P.J. Spiller
    GSI, Darmstadt, Germany
  • J. Blaurock, M. Ossendorf
    FAIR, Darmstadt, Germany
 
  Besides the accelerator machine itself, civil construction of the accelerator ring tunnel building in the northern area of the FAIR campus is a core activity of the rapidly progressing FAIR project. It will facilitate and supply the future SIS100 accelerator at 17m underground level and has been growing continuously and according to schedule since groundbreaking in 2017. This contribution presents the current status of the civil construction progress and gives an optimistic forecast for the preparation of machine installation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB356  
About • paper received ※ 20 May 2021       paper accepted ※ 06 July 2021       issue date ※ 15 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB364 Mu*STAR: A System to Consume Spent Nuclear Fuel While Economically Generating Nuclear Power target, neutron, operation, proton 4499
 
  • R.P. Johnson, R.J. Abrams, M.A. Cummings, S.A. Kahn, J.D. Lobo, T.J. Roberts
    Muons, Inc, Illinois, USA
 
  Mu*STAR is a superconducting-accelerator driven, subcritical, molten-salt reactor designed to consume the spent nuclear fuel (SNF) from today’s commercial fleet of light water reactors. In the process of doing so it will: 1. generate electricity in a cost-competitive manner, 2. significantly reduce the waste-stream volume per Gigawatt-hour generated, 3. greatly reduce the radio-toxic lifetime of the waste stream. As many states and countries now prohibit licensing of new nuclear plants until a national strategy has been established for the long-term disposal of their nuclear waste, Mu*STAR can be an important enabler for new nuclear facilities. This is especially important in the light of climate change, as nuclear energy is the only carbon-free technology for a base-load generation that is readily expandable.  
poster icon Poster THPAB364 [0.497 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB364  
About • paper received ※ 20 May 2021       paper accepted ※ 12 July 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)