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Abstract 
The Spallation Neutron Source (SNS) is an accelerator 

based pulsed neutron source based on a 1 GeV pulsed 
proton Superconducting Radio Frequency (SRF) linear 
accelerator (linac). Since beginning high power beam 
operation in 2006 correlations have been found linking 
abrupt beam loss events to SRF cavity instabilities. With 
the planned upgrades to double the beam power we expect 
increased rates of degradation and the importance of 
minimizing these beam loss events will become ever more 
important. To further limit degradation, we are developing 
machine learning approaches to monitor the beam and to 
detect, predict and prevent beam loss events. Initial 
research has shown that precursors to beam loss events are 
detectable. The initial steps are to use Machine Learning 
(ML) based classification to recognize anomalies and to 
use Long Short-Term Memory (LSTM) autoencoders to 
predict beam loss. In this paper, we describe recent 
progress in applying machine learning for recognizing 
anomalies and predicting beam loss and present initial 
results of our research using acquired data from different 
diagnostics and the Machine Protection System (MPS).  

INTRODUCTION 
The Spallation Neutron Source (SNS) Superconducting 

Radio Frequency (SRF) linear accelerator (linac) provides 
the highest power pulsed proton beam in the world. The 
linac routinely provides beam power of 1.44 MW for 
neutron production. 

SRF Cavity Degradation 
SRF cavity degradation means that over time, to 

maintain high availability, an SRF cavity gradient must be 
continually reduced. There are many causes for having to 
lower an SRF cavity gradient, but the one that has had the 
most focus has been beam loss. The beam loss can be 
abrupt like from an RF cavity fault or a slower process like 
small amounts of loss from beam halo. These types of 
events have been labeled errant beam [1]. 

The beam power ramp up for the SNS began in 2006 (see 
Fig. 1). The power was increased slowly reaching about 
1 MW in late 2009. At that time some of the SRF cavities 
began to experience reliability issues related to beam loss. 
This initial instance of SRF cavity degradation was found 
to be caused by malfunctioning within the Machine 
Protection System (MPS) [2, 3]. 

 
Figure 1: Beam power ramp up history at SNS. 

The issues with the MPS were resolved but the SRF 
cavity degradation continued, though at a reduced rate.  
Further studies revealed that the continuation of 
degradation was related to beam loss caused by faults from 
the Drift Tube Linac (DTL) and Coupled Cavity Linac 
(CCL) RF cavities.  This area of the linac is labeled the 
warm linac due to the DTL and CCL RF cavities operating 
at room temperature relative to the SRF cavities, labeled 
the cold linac, operating at 2 Kelvin [4]. During a warm 
linac cavity fault beam loss occurs within a microsecond. 
The MPS beam turn off time is about 15 microseconds so 
during a warm linac RF cavity fault the beam will stay on 
and all of the beam will be lost for 15 microseconds. One 
thing to keep in mind is that there is no system to limit the 
peak beam current. If the peak current is increased the 
amount of beam lost during an event will increase by that 
amount. For beam power upgrades this may become an 
issue. 

In addition to faults from the warm linac it was found 
that malformed beam pulses originating in the ion source 
also contributed to SRF cavity degradation. The ion source 
can trigger issues in multiple ways. The Low-Level Radio 
Frequency (LLRF) system controls the cavity field 
amplitude and phase.  The system has both feedback and 
Adaptive Feed Forward (AFF) [5]. Feedback controls the 
RF amplitude and phase during the pulse. When the ion 
source malfunctions during the pulse the extra RF power 
supplied to the cavity for beam acceleration is converted 
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into cavity RF gradient until the feedback can lower the 
supplied RF power. The increase in gradient increases field 
emission exponentially and can trigger a cavity to start 
quenching if the field setting is near instability. The more 
the ion source is malfunctioning the more times the field 
will be pushed into instability. The AFF measures RF field 
amplitude and phase errors pulse to pulse at a 20 Hz rate 
(every third pulse). The system then applies the error 
correction for the next 3 pulses. The AFF system will not 
learn the errors for application if an MPS fault occurs on 
the learning pulse. This is an important fact because the ion 
source equipment is not connected to the MPS. This means 
the ion source can malfunction and the AFF will learn the 
errors on a malformed beam pulse and apply the correction 
to the following pulses. This results in significant beam 
loss. 

Lastly there is beam halo caused by improperly tuned 
beam (ion source high voltage or linac magnets). The 
mistuning introduces a small increase in beam loss slowly 
over time that can increase heating within SRF cavities and 
again push cavities into instability. The degradation for one 
SRF cavity is shown in Fig. 2. 

 
Figure 2: SRF cavity 06a field has been lowered from 
12.5 MV/m to 10.2 MV/m over the last 7 years.  The field 
has stabilized since installing a new interlocking scheme in 
2018. 

LIMITING THE IMPACT OF ERRANT 
BEAM 

After the MPS issue was resolved and SRF cavities 
continued to degrade even with the nominal 
15 microsecond beam turn off time a new system was 
developed to turn the beam off faster. 

The new system, the Superconducting Cavity Linac 
(SCL) Differential Current Monitor (DCM) [6], uses a 
Beam Position Monitor (BPM) in the first part of the CCL 
and a Beam Current Monitor (BCM) at the end of the SCL. 
The system measures the beam current at each location 
during the beam pulse and subtracts the two and compares 
to an adjustable limit.  When the difference exceeds the 
limit, it sends a signal to interrupt beam. The response time 
of the system is on the order of 1 microsecond. The system 
connects directly to the Low Energy Beam Transport 

(LEBT) chopper and begins chopping the beam before it 
enters the RFQ. While the beam is being chopped the 
LEBT chopper control sends a signal to the MPS to turn 
off the beam. The direct connection to the LEBT chopper 
cut the beam turn off time in half to about 8 microseconds. 

Even with the reduction in turn off time some of the SRF 
cavities still required gradient reductions to maintain high 
availability. This was because nothing was in place to 
trigger the MPS to fault when an ion source malfunction 
occurred.   

The SCL DCM system software was upgraded to 
compare beam waveforms pulse to pulse at each location 
(CCL and SCL). The logic is, if the new pulse has less 
current than the previous the system will fault through the 
same mechanism as the upstream-downstream difference 
mentioned previously. This solved the issue of the AFF 
learning on malformed ion source pulses. The change was 
implemented in 2018, and since that time the gradient for 
SRF cavity 06a has not needed to be decreased since 
implementation. 

MACHINE LEARNING TO PREVENT 
ERRANT BEAM LOSS 

The SCL DCM solution has worked very well but 
looking forward to the Proton Power Upgrade (PPU) [7] 
there will likely be a need to either reduce the turn off time 
further (will be very difficult) or develop a new method to 
limit beam loss. Instead of focusing on a new design to 
shorten the MPS turn off time the focus recently has been 
on trying to use machine learning to try to predict when an 
errant beam pulse is going to occur and just do not send 
beam for that pulse/pulses. 

Machine Learning Operational Requirements 
The accelerator at SNS is pulsed 60 times per second. 

This means there are a possible 5,184,000 beam pulses.  
There are many different beam trip lengths, but they can be 
binned to determine averages. The beam trip rates that 
machine learning will focus on will be the trips that last 
less than 1 minute. These are the errant beam pulses that 
require operator intervention to reset.  Current less than 
1 minute trip rates are ≈13.6 trips per day (see Fig. 3).   

 
Figure 3: Binned beam trip frequencies since FY09. 
Reducing the first bin is the goal for machine learning. 

On average these trips last ≈41.3 seconds.  On an average 
day this means ≈33,706 pulses are lost due to errant beam 
faults. This is ≈0.65% of the possible daily beam pulses 
lost. From a beam on target loss of neutrons perspective 
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machine learning needs to achieve detection close to this 
percentage including both true negative (bad pulses 
labelled bad) and false negative (good pulses labelled bad) 
to make it operationally feasible. 

It is well understood that beam loss events do degrade 
SRF performance, but it is difficult to estimate how much 
of a reduction in downtime will occur by limiting the 
number of errant beam pulses. 

The current SCL DCM system can detect beam 
abnormalities and turn the beam off approximately 
8 microseconds after beam loss begins. To improve on this, 
machine learning only needs to detect an anomaly 
approximately 10 microseconds before the beam loss 
begins to occur. This will leave enough time for signal 
travel time to the beginning of the accelerator to disable 
beam. Nominally being able to detect the bad pulse an 
entire beam pulse ahead of time should solve all the issues 
seen from errant beam, and that has been the focus thus far. 

Initial Machine Learning Results 
When the SCL DCM was installed, the initial setup 

already had the ability to store the beam current waveform 
for the pulse before the errant beam pulse as well as the 
pulse after the errant beam pulse (see Fig. 4). Data are from 
both the BPM in the CCL as well as the BCM at the end of 
the SCL. 

 
Figure 4: Example of the SCL DCM data storage from the 
initial installation. The first set of waveforms are before 
errant beam, middle during, and on the right after the event. 
All show beam current during the beam pulse. 

Waveform data from 2015 were analysed to determine 
whether there are signatures in the bad pulses that can 
predict errant beam on the following pulse [8]. Multiple 
algorithms were used (k-nearest neighbor, decision tree 
classifiers and regressors, random forests and gradient 
boosts, linear support vector machines, perceptrons and 
neural networks, and others). The best performing 
classifier on a general dataset was the logistic regression 
analysis with 79.5% test precision for true negative 
prediction. When data were filtered based on metadata and 
analysed using neural network the true negative score did 
reach up to 91.9%. The issue is the number of false 
negatives were at 8% which is an order of magnitude too 
high. 

The important result of the initial analysis is there are 
markers in the beam pulse before the errant beam event that 
can be used to predict the expected health of the next pulse. 

Further Analysis and Future Plans 
The initial analysis was done using data from 2015 so it 

was not clear whether the same analysis would produce the 

same results. The analysis was redone on data from July 
2020. The data produced the same results at about 80% 
prediction rate for true negative. False negative results 
were not analysed. 

The initial analysis also presented the need to filter beam 
waveform data based on the accelerator state. Events can 
now be filtered based on the equipment that caused the 
fault. Waveform data for a particular piece of equipment 
should all have the same fault signature and may improve 
prediction accuracy. 

BPM phase data are also stored but no machine learning 
analysis has been done on the BPM data. Figure 5 shows 
an example of BPM data where pulse to pulse phase data 
instabilities are clearly visible by eye. These data should 
provide an easier starting point for machine learning 
experts to understand accelerator data and look for 
signatures. 

 
Figure 5: Example of the BPM phase data during the beam 
pulse. The top is just upstream of a set of SRF cavities and 
the bottom just downstream of the same set of SRF 
cavities. The different colors are 180 different beam pulses. 
Downstream of the cavities the phase slews enough to be 
seen by eye. This event caused a beam trip.  

To that point the data filtering and capture are done by 
accelerator experts. The machine learning analysis is done 
by machine learning experts. Progress has been serial.  
Machine learning experts waiting on data and then 
accelerator experts waiting on analysis. The next focus is 
for accelerator experts to begin performing the machine 
learning analysis as well. 

CONCLUSION 
Significant improvements have been made to reduce 

both the frequency and impact of errant beam in the SCL 
at SNS. Initial results of using machine learning for bad 
pulse detection shows that the pulses can be predicted at 
the 80-90% level. The issue remains that there are too 
many false negative (labelling good pulses as bad) 
predictions. 
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