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Abstract
Superconducting radio frequency (SRF) cavities with high

loaded quality factors that operate in continuous wave (CW)
and low beam loading particle accelerators are sensitive to
microphonics induced detuning, which can result in an in-
crease of power to achieve the operational gradient or even
in a cavity quench. Such SRF cavities have bandwidths in
the order of tens of hertz and detuning requirements can be
as tight as 10 Hz. Traditional passive methods to mitigate
vibration sources and their impact in the cryomodule/cavity
environment have been applied to SRF cavities to reduce mi-
crophonics induced detuning. In addition, active resonance
control techniques that use stepper motors and piezoelectric
actuators to tune the cavity resonance frequency by com-
pensating for microphonics detuning have been investigated.
These control techniques could be further improved by apply-
ing Machine Learning, which has shown promising results
in other control systems of particle accelerators. In this pa-
per, we present an scheme for data production and control
parameter optimization, along with a ML framework for
LLRF control.

INTRODUCTION
The quality of X-rays produced in Free Electron Lasers

(FEL) depends on the quality of the electron beam. The
Low Level RF (LLRF) and resonance control systems are
in charge of controlling amplitude and phase of the electro-
magnetic field inside the superconducting RF (SRF) cavities
and the resonance frequency of the SRF cavities. Tight re-
quirements for field control and cavity detuning are common
in large facilities like the Linac Coherent Light Source II
(LCLS-II), with 0.01% in amplitude, 0.01 degrees in phase
and 10 Hz maximum in cavity detuning [1].

Passive techniques to mitigate for microphonics have been
applied at Jefferson Lab [2] and Fermilab [3]. Active tech-
niques have also been explored delivering successful re-
sults [4,5]. We propose an improvement to these techniques
by using Machine Learning (ML), which has been identified
as a promising tool that can be used in several subsystems
of particle accelerators [6]. For instance, ML has been used
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for cavity fault classification at Jefferson Laboratory with an
accuracy of 78.2% [7].

In this paper, we propose a ML-based LLRF controller
that uses a Neural Network (NN) to calculate the optimal
proportional and integral gains to minimize amplitude and
phase errors. We also present a data production scheme
based on simulations using the CMOC software engine [8]
and an algorithm for stochastic optimization [9].

LLRF MODEL AND DATA PRODUCTION
Traditional LLRF controllers for particle accelerators are

PI controllers like the one shown in Fig. 1. It usually consists
of a couple of close loops for amplitude and phase. There-
fore, the controller has 4 main parameters: proportional and
integral gains for amplitude and phase. Tuning this parame-
ters is not a trivial task, specially when the accelerator has an
important amount of SRF cavities (280 SRF cavities in the
case of the LCLS-II). The tuning process can be optimized
to minimize the amplitude and phase stability errors and a
NN can be trained to learn this optimization. In the next
subsections, we explain the cavity model and the simulations
of the close loop.

Figure 1: Simplified diagram of a traditional PI LLRF con-
troller.

Cavity Model
A multi-cell SRF cavity can me modeled as a group of

RLC circuits (resonant circuits), each one corresponding to
an eigenmode of the cavity. Figure 2 is the equivalent RLC
circuit of each eigenmode. The differential equations that
describe the electrodynamics of the systems are described
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in [8] and can be summarized with the following set of
equations:

𝑉 = 𝑆𝑒𝑗𝜃, (1)
𝑑𝜃
𝑑𝑡 = 𝑤𝑑, (2)

𝑑𝑆
𝑑𝑡 = −𝑤𝑓𝑆 + 𝑤𝑓𝑒−𝑗𝜃(2𝐾𝑔√𝑅𝑔 − 𝑅𝑏𝐼), (3)

where 𝑉 is a representative measure of each mode’s energy,
with magnitude 𝑆 and phase 𝜃, 𝑤𝑑 is the detuning frequency
and 𝑤𝑓 is the cavity bandwidth. 𝐾𝑔 is the incident wave
amplitude, which represents the power that drives the cavity,
𝑅𝑔 is the coupling impedance of the beam, and 𝐼 represents
the beam current. This model is used for simulations and
data production and allows us to simulate the cavity under the
influence of only RF power, or both RF power and electron
beam, using different levels of frequency detuning.

Figure 2: Cavity’s circuit model of a resonant mode.

Closed Loop Simulations
Following the example of the CMOC code [8], we de-

veloped our own simplified code to simulate a cavity and a
PI controller under the following perturbations: beam load-
ing disturbances, cavity constant detuning and measurement
noise. The effects of these perturbations in the stability of
the cavity are explain in detail in [10, 11]. In Fig. 3, the
top plot shows a cavity (blue curve) reaching the set point
(dotted black line) thanks to the action of the control signal
U (red curve). We can see the saturation of the power source
for the first 12ms of the simulation, and the effect of 10Hz
detuning (oscillating at 200Hz) in the control signal U. We
can also see the effect that beam loading has over the control
signal U, when more power is required when the beam is
present (from 15ms to 25ms).

In the bottom plot of Fig. 3, we have a zoom to the cavity’s
voltage signal to see how is is affected by the perturbations:
we see the oscillations due to microphonics, the noise related
to the measurement noise, and an undershoot and overshoot
related to the start and end of the beam. The upper and
lower limits for amplitude stability are shown for reference.
The magnitude of the effects related to the perturbations
mentioned above is a function of the control parameters

(proportional and integral gains). In the next section we
explain how to optimized this parameters to minimize the
stability error.

Figure 3: Top: Simulation of the LLRF closed-loop with
beam loading disturbances, cavity constant detuning and
measurement noise. Bottom: Detail of the cavity’s field.

Figure 4: Relation between 0-dB crossing (or proportional
gain) and RMSE of cavity’s field amplitude.

CONTROL PARAMETER OPTIMIZATION
The 0-dB crossing of the closed-loop depends on the

proportional gain 𝑘𝑝. Fig. 4 shows the relation between 0-dB
crossing (and therefore 𝑘𝑝) and the RMSE of the cavity’s field
amplitude. There is an optimal 𝑘𝑝 that minimizes the error.
Applying an algorithm for stochastic optimization using the
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python library Noisyopt, described in [9] and represented
by the following equation:

min
𝑘𝑝

𝑓 (𝑘𝑝) = min𝑥 𝐸[𝐹(𝑘𝑝, 𝜉)], (4)

one can find the optimal value of the gain. In Eq. (4), 𝑓 (𝑥)
represents the RMSE error as a function of the gain, which
cannot be directly evaluated, and 𝐹(𝑥, 𝜉) represents the func-
tion that we can simulate and their dependency on a noise
𝜉. Using the optimization algorithm and the simulations of
the closed-loop, the results of the optimization are shown in
Fig. 5. The algorithm can find the optimal gain.

Figure 5: Optimization results.

ML ARCHITECTURE
A diagram of the ML-based LLRF control system pro-

posed in this paper is shown in Fig. 6. For the optimization
and data production phase, 𝑥0 represents the inputs to the
optimization algorithm and to the training of the ML. 𝑥0
is the cavity detuning, measurement noise, beam current
and set point. 𝑦 represents the optimal gain calculated by
Noisyopt. 𝑥0 and 𝑦 together built the training dataset for the
ML. Once the ML is trained, it will be able to calculate the
optimal gains, ̃𝑦, for conditions not seen before, ̃𝑥0, and the
LLRf controller will use this optimized gains online.

For the optimization and data production phase, and learn-
ing phase, we use the resources of the THETA supercom-
puter at the Argonne Leadership Computer Facility [12].
The experimental phase should be implemented along with
the LLRF controller in an FPGA, or in an upper level of
software.

SUMMARY AND FUTURE WORK
Simulations of a closed-loop LLRf system have been im-

plemented based on the CMOC software engine. An algo-
rithm for stochastic optimization called Noisyopt has also
been implemented to calculate the optimal proportional gain
that minimizes the RMSE of the cavity’s field amplitude.
An ML-based LLRF controller has been proposed. For the
training of the ML, data is produced with the implemented

Figure 6: Diagram of the ML-based LLRf control system.

software for simulations and with the Noisyopt algorithm.
We plan to develop and deploy the proposed ML-based con-
troller to test it with a cavity emulator.
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