Keyword: solenoid
Paper Title Other Keywords Page
MOA4CO03 Complete Beam Dynamics of the JLEIC Ion Collider Ring Including Imperfections, Corrections, and Detector Solenoid Effects ion, dynamic-aperture, multipole, detector 57
 
  • G.H. Wei, F. Lin, V.S. Morozov, F.C. Pilat, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • M.-H. Wang
    Self Employment, Private address, USA
 
  Funding: This paper has been authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported also by the U.S. DOE Contract DE-AC02-76SF00515.
The JLEIC is proposed as a next-generation facility for the study of strong interaction (QCD). Achieving its goal luminosity of up to 1034 cm-2s−1 requires good dynamical properties and a large dynamic aperture (DA) of ~ ±10 σ of the beam size. The limit on the DA comes primarily from non-linear dynamics, element misalignments, magnet multipole components, and detector solenoid effect. This paper presents a complete simulation including all of these effects. We first describe an orbit correction scheme and determine tolerances on element misalignments. And beta beat, betatron tunes, coupling, and linear chromaticity perturbations also be corrected. We next specify the requirements on the multipole components of the interaction region magnets, which dominate the DA in the collision mode. Finally, we take special care of the detector solenoid effects. Some of the complications are an asymmetric design necessary for a full acceptance detector with a crossing angle of 50 mrad. Thus, in addition to coupling, the solenoid causes closed orbit excursion and excites dispersion. It also breaks the figure-8 spin symmetry. We present a scheme with correction of all of these effects.
 
slides icon Slides MOA4CO03 [1.502 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOA4CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB29 Measurements of the Properties of Garnet Material for Tuning a 2nd Harmonic Cavity for the Fermilab Booster ion, cavity, resonance, ISOL 134
 
  • R.L. Madrak, W. Pellico, G.V. Romanov, C.-Y. Tan, I. Terechkine
    Fermilab, Batavia, Illinois, USA
 
  A perpendicular biased 2nd harmonic cavity is being designed and built for the Fermilab Booster, to help with injection and transition. The frequency range is 76 - 106 MHz. The garnet material chosen for the tuner is AL800. To reliably model the cavity, its static permeability and loss tangent must be well known. We present our measurements of these properties.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB29  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB52 Dielectric Loaded High Pressure Gas Filled RF Cavities for Use in Muon Cooling Channels ion, cavity, plasma, accelerating-gradient 177
 
  • B.T. Freemire
    IIT, Chicago, Illinois, USA
  • M. Backfish, D.L. Bowring, A. Moretti, D.W. Peterson, A.V. Tollestrup, K. Yonehara
    Fermilab, Batavia, Illinois, USA
  • R.P. Johnson
    Muons, Inc, Illinois, USA
  • A.V. Kochemirovskiy
    University of Chicago, Chicago, Illinois, USA
  • Y. Torun
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
High brightness muon beams require significant six dimensional cooling. One cooling scheme, the Helical Cooling Channel, employs high pressure gas filled radio frequency cavities, which provide both the absorber needed for ionization cooling, and a means to mitigate RF breakdown. The cavities are placed along the beam's trajectory, and contained within the bores of superconducting solenoid magnets. Gas filled RF cavities have been shown to successfully operate within multi-Tesla external magnetic fields, and not be overcome with the loading resulting from beam-induced plasma. The remaining engineering hurdle is to find a way to fit 325 and 650 MHz single cell pillbox cavities within the bores of the magnets using modern technology. One method to accomplish this is to partially fill the cavities with a dielectric material. Alumina (Al2O3) is an ideal dielectric, and the experimental test program to determine its performance under high power in a gas filled cavity has concluded. The final results, and their implications for the design of a muon cooling channel based on gas filled RF cavities will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB52  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA46 Development of a Python-Based Emittance Calculator at Fermilab Science & Technology (FAST) Facility emittance, ion, quadrupole, experiment 376
 
  • A.T. Green
    Northern Illinois Univerity, DeKalb, Illinois, USA
  • Y.-M. Shin
    Fermilab, Batavia, Illinois, USA
  • Y.-M. Shin
    Northern Illinois University, DeKalb, Illinois, USA
 
  Beam emittance is an important characteristic which helps to describe a charged particle beam. In linear accelerators (linac), it is critical to characterize the beam phase space parameters and, in particular, to precisely measure transverse beam emittance. The quadrupole scan (quad-scan) is a well established technique used to characterize transverse beam parameters in four-dimensional phase space. Quad-scans are very time consuming and off-line analysis is needed to extrapolate the beam phase space parameters. We have developed a computational algorithm with Python scripts to automatically estimate beam parameters, in particular beam emittance, using the quadrupole scan technique in the electron linac of Fermilab Accelerator Science and Technology (FAST) facility. These Python scripts have decreased the time it takes to perform a single quad scan from a few hours to a few minutes. From the experimental data, the emittance calculator quickly delivers various results including: transverse emittance, Courant-Snyder parameters, and Beam Size (squared) vs Quadrupole field strength plots, among others.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA46  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOA51 First Steps Toward Incorporating Image Based Diagnostics into Particle Accelerator Control Systems Using Convolutional Neural Networks ion, gun, network, controls 390
 
  • A.L. Edelen, S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • J.P. Edelen
    Fermilab, Batavia, Illinois, USA
 
  At present, a variety of image-based diagnostics are used in particle accelerator systems. Often times, these are viewed by a human operator who then makes appropriate adjustments to the machine. Given recent advances in using convolutional neural networks (CNNs) for image processing, it should be possible to use image diagnostics directly in control routines (NN-based or otherwise). This is especially appealing for non-intercepting diagnostics that could run continuously during beam operation. Here, we show results of a first step toward implementing such a controller: our trained CNN can predict multiple simulated downstream beam parameters at the Fermilab Accelerator Science and Technology (FAST) facility's low energy beamline using simulated virtual cathode laser images, gun phases, and solenoid strengths.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOA51  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB16 A Simple Method for Measuring the Electron-Beam Magnetization ion, electron, cathode, emittance 521
 
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • G. Ha
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • P. Piot
    Fermilab, Batavia, Illinois, USA
  • J.G. Power, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • G. Qiang
    TUB, Beijing, People's Republic of China
 
  There are a number of projects that require magnetized beams, such as electron cooling or aiding in flat beam transforms. Here we explore a simple technique to characterize the magnetization, observed through the angular momentum of magnetized beams. These beams are produced through photoemission. The generating drive laser first passes through microlens arrays (fly-eye light condensers) to form a transversely modulated pulse incident on the photocathode surface. The resulting charge distribution is then accelerated from the photocathode. We explore the evolution of the pattern via the relative shearing of the beamlets, providing information about the angular momentum. This method is illustrated through numerical simulations and preliminary measurements carried out at the Argonne Wakefield Accelerator (AWA) facility are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB24 Optimization of Linear Induction Radiography Accelerator with Electron Beam with Energy Variation ion, electron, target, induction 546
 
  • Y.H. Wu, Y.J. Chen
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
The current interest for the next generation linear induction radiography accelerator (LIA) is to generate multiple electron beam pulses with high peak currents. The beam energy and current may vary from pulse to pulse. Conse-quently, the transport and control of multi-pulsing intense electron beams through a focus-ing lattice over a long distance on such machine becomes challenging. Simulation studies of multi-pulse LIAs using AMBER [1] and BREAKUP Code [2] are described. These include optimized focusing magnetic tune for beams with energy and current variations, and steering correction for corkscrew motion. The impact of energy variation and accelerating voltage error on radiograph performance are discussed.
 
poster icon Poster TUPOB24 [1.419 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB24  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB30 Spin Flipping System in the JLEIC Collider Ring ion, collider, polarization, controls 558
 
  • V.S. Morozov, Y.S. Derbenev, F. Lin, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Filatov
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • A.M. Kondratenko, M.A. Kondratenko
    Science and Technique Laboratory Zaryad, Novosibirsk, Russia
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The figure-8 JLEIC collider ring opens wide possibilities for manipulating proton and deuteron spin directions during an experiment. Using 3D spin rotators, one can, at the same time, efficiently control the polarization direction as well as the spin tune value. The 3D spin rotators allow one to arrange a system for reversals of the spin direction in all beam bunches during an experiment, i.e. a spin-flipping system. To preserve the polarization, one has to satisfy the condition of adiabatic change of the spin direction. When adjusting the polarization direction, one can stabilize the spin tune value, which completely eliminates resonant beam depolarization during the spin manipulation process. We provide the results of numerical modeling of a spin-flipping system in the JLEIC ion collider ring. The presented results demonstrate the feasibility of organizing a spin-flipping system using a 3D rota-tor. The figure-8 JLEIC collider provides a unique capability of doing high-precision experiments with polarized ion beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB30  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB64 Beam Measurements at the PIP-II Injector Test LEBT ion, emittance, simulation, ion-source 636
 
  • J.-P. Carneiro, B.M. Hanna, L.R. Prost, V.E. Scarpine, A.V. Shemyakin
    Fermilab, Batavia, Illinois, USA
 
  This paper presents the main results obtained during a series of beam measurements performed on the PIP-II Injector Test LEBT from November 2014 to June 2015. The measurements which focus on beam transmission, beam size and emittance at various locations along the beamline are compared with the beam dynamics code TRACK. These studies were aimed at preparing the beam for optimal operation of the RFQ, while evaluating simulation tools with respect to experimental data.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB64  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB66 Procedure for the Alignment of the Beam in the Electrical Axes of the Pi-Test RFQ ion, rfq, alignment, emittance 639
 
  • J.-P. Carneiro, L.R. Prost, J. Steimel
    Fermilab, Batavia, Illinois, USA
 
  The PI-Test Radio-Frequency Quadrupole (RFQ) has been in operation with beam at Fermilab since March 2016. The RFQ accelerates H beam from 30 keV to 2.1 MeV currently with 20 mus pulses and a maximum current of 10 mA. Once fully conditioned, the RFQ is expected to enable CW operation. Simulations with the beam dynamics code TRACK predict that a misalignment of the beam at the RFQ entrance can possibly deteriorate the transverse and longitudinal emittance at the RFQ exit without necessarily impacting the beam transmission. This paper discusses the procedure developed at Fermilab to align the beam in the electrical axes of the RFQ. Experimental results are shown together with predictions from TRACK.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB66  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA36 Simulated Measurements of Beam Cooling in Muon Ionization Cooling Experiment ion, emittance, experiment, lattice 771
 
  • T.A. Mohayai
    IIT, Chicago, Illinois, USA
  • D.V. Neuffer, D.V. Neuffer, P. Snopok
    Fermilab, Batavia, Illinois, USA
  • C.T. Rogers
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • P. Snopok
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Science Graduate Student Research (SCGSR) under contract No. DE-AC05-06OR23100.
Cooled muon beams are essential to enable future Neutrino Factory and Muon Collider facilities. The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam cooling through ionization energy loss in material. A figure of merit for muon beam cooling in MICE is the transverse root-mean-square (RMS) emittance reduction and to measure this, the individual muon positions and momenta are reconstructed using two scintillating-fiber tracking detectors housed in spectrometer solenoid modules. The reconstructed positions and momenta before and after a low-Z absorbing material are then used for constructing the covariance matrix and measuring normalized transverse RMS emittance of MICE muon beam. However, RMS emittance is sensitive to nonlinear effects in beam optics. In this study, the direct measurement of phase-space density as an alternative approach to measuring the muon beam cooling using the novel Kernel Density Estimation (KDE) method, is described.
 
poster icon Poster WEPOA36 [1.855 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA36  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA45 Positive and Negative Ions Radio Frequency Sources with Solenoidal Magnetic Field ion, plasma, ion-source, electron 799
 
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Illinois, USA
  • G. Dudnikova
    ICT SB RAS, Novosibirsk, Russia
  • B. Han, S. Murrey, C. Stinson
    ORNL RAD, Oak Ridge, Tennessee, USA
  • T.R. Pennisi, C. Piller, M. Santana, M.P. Stockli, R.F. Welton
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: The work was supported in part by US DOE Contract DE-AC05-00OR22725 and by STTR grant, DE-SC0011323.
Operation of Radio Frequency surfaces plasma sources (RF SPS) with a solenoidal magnetic field are described. RF SPS with solenoidal and saddle antennas are discussed. Dependences of beam current and extraction current on RF power, gas flow, solenoidal magnetic field and filter magnetic field are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA45  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA57 Stabilized Operation Mode of Laser Ion Source Using Pulsed Magnetic Field ion, laser, ion-source, electron 823
 
  • S. Ikeda, M.R. Costanzo, T. Kanesue, R.F. Lambiase, C.J. Liaw, M. Okamura
    BNL, Upton, Long Island, New York, USA
 
  A laser ion source (LIS) provides several types of singly charged ions into an electron beam ion source (EBIS) followed by linear accelerator injectors for the Relativistic Heavy Ion Collider (RHIC) and the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory. In the present set-up of the LIS, beam current shape varies with time drastically. It is expected that the present current shape is not optimal for the ion trap of the EBIS. However, there are no knobs to modify the shape flexibly. Therefore, as an upgrade of the LIS, we install a coil and a pulsed circuit* that generates a fast-rising pulsed magnetic field to tailor the beam current shape. In this presentation, the effect of the magnetic field on the beam profile from the LIS and the performance of the injectors, such as the transmission and the charge injected into an accelerator downstream, are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA57  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOB61 Magnetic Shielding of LEReC Cooling Section ion, shielding, simulation, electron 1030
 
  • S. Seletskiy, A.V. Fedotov, D.M. Gassner, D. Kayran, G.J. Mahler, W. Meng
    BNL, Upton, Long Island, New York, USA
 
  The transverse angle of the electron beam trajectory in the low energy RHIC Electron Cooling (LEReC) accelerator cooling section (CS) must be much smaller than 100 urad. This requirement sets 2.3 mG limit on the ambient transverse magnetic field. The maximum ambient field in the RHIC tunnel along the cooling section was measured to be 0.52 G. In this paper we discuss the design of the proposed LEReC CS magnetic shielding, which is capable of providing required attenuation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOB61  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA16 Gaseous H2-Filled Helical FOFO Snake for Initial 6D Ionization Cooling of Muons ion, emittance, focusing, dipole 1129
 
  • Y.I. Alexahin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the U.S. DOE
H2 gas-filled channel for 6D ionization cooling of muons is described which consists of periodically inclined solenoids of alternating polarity with 325MHz RF cavities inside them. To provide sufficient longitudinal cooling LiH wedge absorbers are placed at the minima of transverse beta-function between the solenoids. An important feature of such channel (called Helical FOFO snake) is that it can cool simultaneously muons of both signs. Theoretical considerations as well as results of simulations with G4beamline are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA16  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA22 Linear Lattice and Trajectory Reconstruction and Correction at FAST Linear Accelerator ion, lattice, experiment, cavity 1149
 
  • A.L. Romanov, D.R. Edstrom
    Fermilab, Batavia, Illinois, USA
  • A. Halavanau
    Northern Illinois University, DeKalb, Illinois, USA
 
  Low energy part of FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to its magnetic axes. Details of used methods and experimental results are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA22  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA3CO04 Space Charge Compensation Using Electron Columns and Electron Lenses at IOTA ion, electron, proton, space-charge 1257
 
  • C.S. Park, D. Milana, V.D. Shiltsev, G. Stancari, J.C.T. Thangaraj
    Fermilab, Batavia, Illinois, USA
  • D. Milana
    Politecnico/Milano, Milano, Italy
 
  Funding: This work was supported by the United States Department of Energy under contract DE-AC02-07CH11359.
The ability to transport a high current proton beam in a ring is ultimately limited by space charge effects. Two novel ways to overcome this limit in a proton ring are by adding low energy, externally matched electron beams (electron lens, e-lens), and by taking advantage of residual gas ionization induced neutralization to create an electron column (e-column). Theory predicts that an appropriately confined electrons can completely compensate the space charge through neutralization, both transversely and longitudinally. In this report, we will discuss the current status of the Fermilab's e-lens experiment for the space charge compensation. In addition, we will show how the IOTA e-column compensates space charge with the WARP simulations. The dynamics of proton beams inside of the e-column isunderstood by changing the magnetic field of a solenoid, the voltage on the electrodes, and the vacuum pressure, and by looking for electron accumulation, as well as by considering various beam dynamics in the IOTA ring.
 
slides icon Slides THA3CO04 [42.834 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THA3CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)