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Abstract

We are developing a new numerical integrator based on
Picard iteration method for Coulomb collisions. The aim
is to achieve a given prescribed accuracy most efficiently.
The integrator is designed to have adaptive time stepping,
variable order, and dense output. It also has an automatic
selection of the order and the time step. We show that with
a good estimation of the radius of convergence of the ex-
pansion, we can obtain the optimal time step size. We also
show how the optimal order of the integration is chosen to
maintain the required accuracy. For efficiency, particles are
distributed over time bins and propagated accordingly.

INTRODUCTION

Many numerical integrators exist to solve the ordinary
differential equations (ODESs) of the n-body problem. The
goal of any numerical integrator is to achieve a given pre-
scribed accuracy most efficiently. The main parameters con-
trolled to accomplish this goal are the time step size and the
order of the integration. Accuracy is usually attained by us-
ing either a very small time step size or a very high order,
and both parameters are kept fixed during the simulation.
Hence, the available integrators face efficiency challenges
while trying to maintain accuracy.

Aiming to achieve both accuracy and efficiency, we de-
veloped our numerical integrator to be adaptive, variable
order and with dense output. The integrator is proposed
to deal with the electrostatic n-body problem. It is based
on Picard iteration method combined with differential alge-
bra (DA) [1]. The DA is a powerful tool to deal with ODEs
since its structure is based on truncated power series algebra
(TPSA) with well defined basic and analytic operations [2].
It has been proven that numerical methods based on Picard
iteration can be competitive when implemented with the ad-
vanced differential algebra [3]. Here, we present features of
our integrator that enable accomplishing accuracy and effi-
ciency with some examples.

THE NUMERICAL INTEGRATOR

Our Picard-based numerical integrator is adaptive, vari-
able order with dense output. Adaptive variable order
means that it uses a time step that is as large as possible
while varying the order. This allows to maintain efficiency
by reducing the order when a small time step is required,
and to attain accuracy by increasing the order if a large time
step is allowed. This adaptivity was shown to be the most
efficient way to achieve the required accuracy [4]. Time
stepping is performed using time bins where each particle
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is propagated with the appropriate time step size. Particles’
time step sizes are automatically selected to increase effi-
ciency. The dense output generated by the integrator is im-
portant for computations efficiency of time stepping, espe-
cially in the very high accuracy regime in certain applica-
tions.

System of Equations

Our integrator deals with a system of ODEs (1) that we
derived from a net Coulomb force of all the particles in
the system. For particle i, there are six differential equa-
tions, three for position derivatives, and three for momen-
tum derivatives. Therefore, for N particles, we have 6N
ODE:s to be integrated. Particles can be non-relativistic as
well as relativistic.
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m = mass of particle, g = charge of particle, and ¢ = speed
of light.

In case there is an external field (electric and/or mag-
netic), the components of % (E + cv x B) will be added
to the the respectful components of the momentum deriva-
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Optimal Time Step Size and Optimal Order

A. Jobra and M. Zou presented two main requirements
for the optimal selection of the time step size and the or-
der [5]. The integrator must have a truncation error of the
order of a given prescribed accuracy, and it should use the
minimum total number of arithmetic operations. In order
to meet these requirements, [5] provided a theorem for the
optimal selection of the time step size /# and the order p up
to which Taylor series has to be computed. According to the
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theorem, when the error & goes to zero, the most efficient
step size in the computational sense will be:

h==—= 2
5 @)
where p is the radius of convergence of the power series.
In (2), h does not depend on the accuracy, but once 7% is
selected, the optimal order p that guarantees the required
precision is:

1 &
p=-si()-1 3)

Here M is a positive constant which depends on p and
the coefficients of the power series xU/l as M ~ |xU/]|p/.

Radius of Convergence Each function of the 6N
ODE:s is expanded as a polynomial of time up to some order
using Picard iterations. Each function has its own radius of
convergence p (the distance of the nearest root on the com-
plex plane to the origin). p can be different for each particle
ateach time step. Since the optimal time step size & depends
on p in (2), we need to calculate the radius of convergence
(i.e. we need to find the roots of each polynomial). How-
ever, performing such computations will be inefficient for
systems with large number of particles or for polynomials
of high orders. Therefore, we need to find a good estimation
of p using the coefficients of the functions expansions.

There are many mathematical theories on the estimation
of the upper and lower bounds of a polynomial roots using
its coefficients (lower bound = radius of convergence). Af-
ter testing some of these theories [6-9], we concluded that
Lagrange method gives the best estimation of the radius of
convergence for the purpose of our research.

Lagrange’s lower bound for a polynomial with complex

coefficients:
N

PR) = ) 4
i=0
is given by the inverse of the sum of the two largest numbers

1/i
}, i=1---,N)[8,9].
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Time Stepping

At each time step, we begin Picard iterations for our sys-
tem of equations and expand each function in (1) as a poly-
nomial of time. For each particle i, we estimate the ra-
dius of convergence p; from its polynomials using Lagrange
method. The optimal time step size A; is calculated using
(2). The iterations continue until each particle reaches its
optimal order p; that satisfies (3). Then, particles are dis-
tributed over a number of bins according to their current
time in order to be propagated. We use two types of time
bins: bins of equal time widths, and bins of equal number
of particles. We propagate particles in the first bin with the
appropriate time step size. In later time steps, Picard iter-
ations are performed again only for particles that were not
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propagated in the previous time step. The advantage of bin-
ning will become clear when parallelizing the code to be
faster and more efficient.

EXAMPLES

The integrator is implemented using COSY INFINITY
software [10]. The following examples are done with uni-
form distributions within cm dimensions. We used accu-
racies € = 1077 and & = 107!, Particles are all protons
with high energy of 14 TeV, or low energy of 1 MeV. Some
runs were done with time bins of equal time widths and the
others were with time bins of equal number of particles.

Non-Relativistic Protons

We used 1000 non-relativisic protons with a uniform ini-
tial distribution. The final distributions are almost the same
when using bins of equal number of particles and bins of
equal time widths (Fig.1). For runs with the same type of
bins but with different accuracies, the required orders of the
particles varied. Low accuracy did not need orders higher
than 2. The higher accuracy of 10~'® required orders be-
tween 3 and 4.
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Figure 1: The final distribution using bins of equal time
widths for the non-relativistic protons.

The time step sizes did not depend on the accuracies (as
(2) implied) and the results are the same for both accuracies.
For Bins of equal time widths, a histograms of the time step
sizes used in the total run is shown in Fig.2, and a histogram
of the calculated time steps of a specific particle is shown
in Fig.3 where it was propagated 199 times. For bins with
equal number of particles, the time step sizes during the run
are shown in Fig.4, and the calculated time steps of the same
specific proton are shown in Fig.5, where it was propagated
509 times.

Relativistic Protons

The interactions of 100 relativistic protons with energy
of 14 TeV required low order of 2 or less for both
accuracies with both types of bins. The time step sizes
used in the total run for bins of equal time widths (Fig.
6) are larger (hence, the number of time steps is less and
the total run time is faster) than for bins of equal number
of particles (Fig.7).
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Figure 2: A histogram of the time step sizes used by the

integrator at all steps when bins are of equal time widths

for the non-relativistic protons.
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Figure 3: The calculated time step sizes of a proton when
bins are of equal time widths.
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Figure 4: A histogram of the time step sizes used the non-
relativistic protons at all steps when bins are of equal num-
ber of particles.

CONCLUSION

Our Picard-based integrator for pair-wise interactions is
equipped with adaptivity, variable order and dense output.
It is proposed to overcome efficiency challenges faced by
other available integrators. We showed how we can accom-
plish this goal using optimal selections of the order and time
step size, while time stepping is performed using time bins.
Our results are as expected based on theorems from [5]
where the optimal time step size depends on the initial con-
figuration of the particles, and the optimal order guarantees
our required accuracy. We used two different types of time
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Figure 5: A histogram of the estimated time step sizes for a
specific proton when bins are of equal number of particles.
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Figure 6: The total run time step sizes histogram for rela-
tivistic protons when bins are of equal time widths.
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Figure 7: Time step sizes histogram of the whole run for
relativistic protons when bins are of equal number of
particles.

bins. Our runs show that using time bins of equal time
widths are faster than using time bins of equal number of
particles. As a future work, the integrator can be parallal-
ized to be more efficient when handling large number of
particles.
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