Keyword: collider
Paper Title Other Keywords Page
MOB2CO03 Collider in the Sea: Vision for a 500 TeV World Laboratory ion, luminosity, hadron, dipole 13
 
  • P.M. McIntyre, S.P. Bannert, J. Breitschopf, J. Gerity, J.N. Kellams, A. Sattarov
    Texas A&M University, College Station, USA
  • S. Assadi
    HiTek ESE LLC, Madison, USA
  • D. Chavez
    DCI-UG, León, Mexico
  • N. Pogue
    LLNL, Livermore, California, USA
 
  A design is presented for a hadron collider in which the magnetic storage ring is configured as a circular pipeline, supported in neutral buoyancy in the sea at a depth of ~100 m. Each collider detector is housed in a bathysphere the size of the CMS hall at LHC, also neutral-buoyant. Each half-cell of the collider lattice is ~300 m long, housed in a single pipe that contains one dipole, one quadrupole, a correction package, and all umbilical connections. A choice of ~4 T dipole field, 2000 km circumference provides a collision energy of 700 TeV. Beam dynamics is dominated by synchrotron radiation damping, which sustains luminosity for >10 hours. Issues of radiation shielding and abort can be accommodated inexpensively. There are at least ten sites world-wide where the collider could be located, all near major urban centers. The paper summarizes several key issues; how to connect and disconnect half-cell segments of the pipeline at-depth using remote submersibles; how to maintain the lattice in the required alignment; provisions for the injector sequence.  
slides icon Slides MOB2CO03 [3.440 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOB2CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOB3CO04 High Luminosity 100 TeV Proton-Antiproton Collider ion, proton, antiproton, quadrupole 45
 
  • S.J. Oliveros, J.G. Acosta, L.M. Cremaldi, T.L. Hart, D.J. Summers
    UMiss, University, Mississippi, USA
 
  The energy scale for new physics is known to be in the multi-TeV range, signaling the potential need for a collider beyond the LHC. A 1034 cm**−2 s**−1 luminosity 100 TeV proton-antiproton collider is explored. Prior engineering studies for 233 and 270 km circumference tunnels were done for Illinois dolomite and Texas chalk signaling manageable tunneling costs. At a ppbar the cross section for high mass states is of order 10x higher with antiproton collisions, where antiquarks are directly present rather than relying on gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets, because lower beam currents can produce the same rare event rates. In our design the increased momentum acceptance (11 ± 2.6 GeV/c) in a Fermilab-like antiproton source is used with septa to collect 12x more antiprotons in 12 channels. For stochastic cooling, 12 cooling systems would be used, each with one debuncher/momentum equalizer ring and two accumulator rings. One electron cooling ring would follow. Finally antiprotons would be recycled during runs without leaving the collider ring, by joining them to new bunches with synchrotron damping.  
slides icon Slides MOB3CO04 [1.304 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOB3CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOB4CO03 Design of Muon Collider Lattices ion, sextupole, quadrupole, factory 69
 
  • Y.I. Alexahin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under Contract DE-AC02-07CH11359 with the U.S. DOE
A Muon Collider promises unique opportunities both as an energy frontier machine and as a factory for detailed study of the Higgs boson and other particles. However, in order to achieve a competitive level of luminosity a number of demanding requirements to the collider optics should be satisfied arising from short muon lifetime and relatively large values of the transverse emittance and momentum spread in muon beams that can realistically be obtained with ionization cooling. Basic solutions which make possible to achieve these goals with Nb3Sn magnet parameters are presented.
 
slides icon Slides MOB4CO03 [0.794 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOB4CO03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB30 Development and Comparison of Mechanical Structures for FNAL 15 T Nb3Sn Dipole Demonstrator ion, dipole, operation, controls 137
 
  • A.V. Zlobin, I. Novitski
    Fermilab, Batavia, Illinois, USA
 
  Funding: *Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
Main design challenges for 15 T accelerator magnets are large Lorentz forces at this field level. The large Lorentz forces generate high stresses in the coil and mechanical structure and, thus, need stress control to maintain them at the acceptable level for brittle Nb3Sn coils and other elements of magnet mechanical structure. To provide these conditions and achieve the design field in the FNAL 15 T dipole demonstrator, several mechanical structures have been developed and analysed. The possibilities and limitations of these designs are discussed in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB30  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOB54 Superferric Arc Dipoles for the Ion Ring and Booster of JLEIC ion, dipole, multipole, quadrupole 184
 
  • P.M. McIntyre, J. Breitschopf, T. Elliott, R. Garrison, J. Gerity, J.N. Kellams, A. Sattarov
    Texas A&M University, College Station, USA
  • D. Chavez
    DCI-UG, León, Mexico
 
  Funding: This work was supported by a grant from the NP Division of the US Dept. of Energy.
The JLEIC project requires 3 T superferric dipoles and quadrupoles for the half-cell arcs of its Ion Ring and Booster. A superferric design using NbTi cable-in-conduit conductor is being developed. A mockup winding has been completed, with the objectives to develop and evaluate the coil structure and the winding tooling and methods, and to measure errors in the position of each cable turn in the dipole body. The results of the mockup winding study are presented. The CIC design is now ready for construction and testing of a first model dipole.
 
poster icon Poster MOPOB54 [1.147 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB54  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB05 An Alternative Approach for the JLEIC Ion Accelerator Complex ion, booster, linac, proton 486
 
  • B. Mustapha, Z.A. Conway, P.N. Ostroumov, A.S. Plastun
    ANL, Argonne, USA
  • Y.S. Derbenev, F. Lin, V.S. Morozov, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the U.S. DOE, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 for ANL and by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The current baseline design for the JLab EIC (JLEIC) ion accelerator complex is based on a pulsed superconducting linac, an 8-GeV booster followed by a dual function 20-100 GeV booster and collider ring. Both the 8-GeV booster and collider ring will use super-ferric magnets with fields up to 3 Tesla. We here propose an alternative cost-effective and low-risk design where the 8-GeV booster is replaced with a more compact 3-GeV booster using room-temperature magnets. The electron storage ring, which is part of the electron complex, will also serve as large booster for the ions, up to 11 GeV. We also propose two stages for the JLEIC. A first low-energy stage up to 60 GeV, where room-temperature magnets (up to 1.6 Tesla) will be used for the ion collider ring, to be later replaced with 6 Tesla superconducting magnets in a second stage of the project providing up to 200 GeV energy. In this second stage, the 1.6 T room-temperature magnets will replace the PEP-II magnets in the electron storage ring to boost the ions to higher energies (25 GeV or higher) for appropriate injection into the higher energy collider. Details and feasibility of the proposed plan will be presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB05  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB06 Accomplishments of the Heavy Electron Particle Accelerator Program ion, factory, proton, experiment 489
 
  • D.V. Neuffer, D. Stratakis
    Fermilab, Batavia, Illinois, USA
  • M.A. Cummings
    Muons, Inc, Illinois, USA
  • J.-P. Delahaye
    SLAC, Menlo Park, California, USA
  • M.A. Palmer
    BNL, Upton, Long Island, New York, USA
  • R.D. Ryne
    LBNL, Berkeley, California, USA
  • D.J. Summers
    UMiss, University, Mississippi, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359
The Muon Accelerator Program has completed a four-year study on the feasibility of muon colliders and on using stored muon beams for neutrinos. That study was broadly successful in its goals, establishing the feasibility of lepton colliders from the 125 GeV Higgs Factory to more than 10 TeV, as well as exploring using μ storage rings for neutrinos. The key components of the muon collider scenarios are a high-intensity proton source, a multi MW target and transport system for π capture, a front end system for bunching, energy compression and initial cooling of μ's, muon cooling systems to obtain intense μ+ and μ- bunches, acceleration up to multiTeV energies, and a collider ring with detectors for high luminosity collisions. For a neutrino factory a similar system could be used but with a racetrack storage ring for ν production and without the cooling needed for high luminosity collisions. Feasible designs and detailed simulations of all of these components have been obtained, including some initial hardware component tests, setting the stage for future implementation where resources are available and clearly associated physics goals become apparent.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB07 Considerations on Energy Frontier Colliders After LHC ion, luminosity, plasma, hadron 493
 
  • V.D. Shiltsev
    Fermilab, Batavia, Illinois, USA
 
  The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosiity and feasibility of cost. The talk will give on overview of all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC, etc) and discuss major challenges and accelerator R&D required to claim these machines feasible.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB07  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB13 Simulations of Space Charge Neutralization in a Magnetized Electron Cooler ion, electron, simulation, experiment 511
 
  • J. Gerity, P.M. McIntyre
    Texas A&M University, College Station, USA
  • D.L. Bruhwiler, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • V. Moens
    EPFL, Lausanne, Switzerland
  • C.S. Park, G. Stancari
    Fermilab, Batavia, Illinois, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award Number DE-SC0015212.
Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB13  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB30 Spin Flipping System in the JLEIC Collider Ring ion, polarization, controls, solenoid 558
 
  • V.S. Morozov, Y.S. Derbenev, F. Lin, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Filatov
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • A.M. Kondratenko, M.A. Kondratenko
    Science and Technique Laboratory Zaryad, Novosibirsk, Russia
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contracts No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
The figure-8 JLEIC collider ring opens wide possibilities for manipulating proton and deuteron spin directions during an experiment. Using 3D spin rotators, one can, at the same time, efficiently control the polarization direction as well as the spin tune value. The 3D spin rotators allow one to arrange a system for reversals of the spin direction in all beam bunches during an experiment, i.e. a spin-flipping system. To preserve the polarization, one has to satisfy the condition of adiabatic change of the spin direction. When adjusting the polarization direction, one can stabilize the spin tune value, which completely eliminates resonant beam depolarization during the spin manipulation process. We provide the results of numerical modeling of a spin-flipping system in the JLEIC ion collider ring. The presented results demonstrate the feasibility of organizing a spin-flipping system using a 3D rota-tor. The figure-8 JLEIC collider provides a unique capability of doing high-precision experiments with polarized ion beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB30  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB36 Simulation Study on JLEIC High Energy Bunched Electron Cooling ion, electron, emittance, simulation 568
 
  • H. Zhang, S.V. Benson, J. Chen, Y.S. Derbenev, R. Li, Y. Roblin, Y. Zhang
    JLab, Newport News, Virginia, USA
  • H. Huang, L. Luo
    ODU, Norfolk, Virginia, USA
 
  Funding: * Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357.
In the JLab Electron Ion Collider (JLEIC) project the traditional electron cooling technique is used to reduce the ion beam emittance at the booster ring, and to compensate the intrabeam scattering effect and maintain the ion beam emittance during the collision at the collider ring. Different with other electron coolers using DC electron beam, the proposed electron cooler at the JLEIC ion collider ring uses high energy bunched electron beam, provided by an ERL. In this paper, we report some recent simulation study on how the electron cooling rate will be affected by the bunched electron beam properties, such as the correlation between the longitudinal position and momentum, the bunch size, and the Larmor emittance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB36  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOB44 Final 6d Muon Ionization Cooling Using Strong Focusing Quadrupoles ion, emittance, quadrupole, betatron 592
 
  • T.L. Hart, J.G. Acosta, L.M. Cremaldi, S.J. Oliveros, D.J. Summers
    UMiss, University, Mississippi, USA
  • D.V. Neuffer
    Fermilab, Batavia, Illinois, USA
 
  Low emittance muon beam lines and muon colliders are potentially a rich source of BSM physics for future experimenters. A normalized transverse muon emittance of 280 microns has been achieved in simulation with short solenoids and a betatron function of 3 cm. Here we use ICOOL, G4Beamline, and MAD-X to explore using a flat 400 MeV/c muon beam and strong focusing quadrupoles to achieve a normalized transverse emittance of 100 microns and finish 6D cooling. The low beta regions, as low as 5 mm, produced by the quadrupoles are occupied by dense, low Z absorbers, such as lithium hydride or beryllium, that cool the beam. Equilibrium transverse emittance is linearly proportional to the beta function. Reverse emittance exchange with septa and/or wedges is then used to decrease transverse emittance from 100 to 25 microns at the expense of longitudinal emittance for a high energy lepton collider. Cooling challenges include chromaticity correction, momentum passband overlap, quadrupole acceptance, and staying in phase with RF.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-TUPOB44  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEB2IO02 Compact Crabbing Cavity Systems for Particle Colliders cavity, ion, HOM, dipole 679
 
  • S.U. De Silva
    ODU, Norfolk, Virginia, USA
 
  In circular or ring-based particle colliders, crabbing cavities are used to increase the luminosity. The first superconducting crabbing cavity system was successfully implemented at KEKB electron-positron collider that have demonstrated the luminosity increase with overlapping bunches. Crabbing systems are an essential component in the future colliders with intense beams, such as the LHC high luminosity upgrade and proposed electron-ion colliders. Novel compact superconducting cavity designs with improved rf properties, at low operating frequencies have been prototyped successfully that can deliver high operating voltages. We present single cavity and multi-cell crabbing cavities proposed for future particle colliders and addresses the challenges in those cavity systems.  
slides icon Slides WEB2IO02 [13.985 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEB2IO02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA06 New Coolers for Ion Ion Colliders ion, electron, gun, proton 700
 
  • V.V. Parkhomchuk
    BINP SB RAS, Novosibirsk, Russia
 
  For crucial contributions in the proof of principle of electron cooling, for leading contribution to the experimental and theoretical development of electron cooling, and for achievement of the planned parameters of coolers for facilities in laboratories around the world the 2016 "Robert R. Wilson Prize for Achievement in the Physics of Particle Accelerators" was awarded to Vasili Parkhomchuk. In this paper new future coolers for ion*ion collider will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA35 Wedge Absorbers for Muon Cooling with a Test Beam at MICE ion, emittance, experiment, simulation 768
 
  • D.V. Neuffer
    Fermilab, Batavia, Illinois, USA
  • J.G. Acosta, D.J. Summers
    UMiss, University, Mississippi, USA
  • T.A. Mohayai
    IIT, Chicago, Illinois, USA
  • P. Snopok
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under contract No. DE-AC02-07CH11359
Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA35  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA37 Hybrid Methods for Simulation of Muon Ionization Cooling Channels ion, simulation, scattering, experiment 775
 
  • J.D. Kunz, P. Snopok
    IIT, Chicago, Illinois, USA
  • M. Berz
    MSU, East Lansing, Michigan, USA
  • J.D. Kunz
    Anderson University, Anderson, USA
  • P. Snopok
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy
COSY Infinity is an arbitrary-order beam dynamics simulation and analysis code. It uses high-order transfer maps of combinations of particle optical elements of arbitrary field configurations. New features have been developed and implemented in COSY to follow charged particles through matter. To study in detail the properties of muons passing through a material, the transfer map approach alone is not sufficient. The interplay of beam optics and atomic processes must be studied by a hybrid transfer map–Monte Carlo approach in which transfer map methods describe the average behavior of the particles including energy loss, and Monte Carlo methods are used to provide small corrections to the predictions of the transfer map, accounting for the stochastic nature of scattering and straggling of particles. This way the vast majority of the dynamics is represented by fast application of the high-order transfer map of an entire element and accumulated stochastic effects. The gains in speed simplify the optimization of muon cooling channels which are usually very computationally demanding. Progress on the development of the required algorithms is reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA37  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOA54 Simulation of a Skew Parametric Resonance Ionization Cooling Channel ion, resonance, simulation, cavity 813
 
  • Y. Bao
    UCR, Riverside, California, USA
  • A. Afanasev
    GWU, Washington, USA
  • Y.S. Derbenev, V.S. Morozov, A.V. Sy
    JLab, Newport News, Virginia, USA
  • R.P. Johnson
    Muons, Inc, Illinois, USA
 
  Skew Parametric-resonance Ionization Cooling (Skew-PIC) is designed for the final 6D cooling of a high-luminosity muon collider. Tracking of muons in such a channel has been modeled in MAD-X in previous studies. However, the ionization cooling process has to be simulated with a code that can handle matter dominated beam lines. In this paper we present the simulation of a Skew-PIC channel using G4beamline. We implemented the required magnetic field components into G4beamline and compare the tracking of muons by the two different codes. We optimize the cooling channel and present the muon cooling effect in the Skew-PIC channel for the first time.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-WEPOA54  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1CO04 Persistent Current Effect in 15-16 T Nb3Sn Accelerator Dipoles and its Correction ion, dipole, ion-effects, sextupole 1061
 
  • A.V. Zlobin, V.V. Kashikhin
    Fermilab, Batavia, Illinois, USA
 
  Funding: * This work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.
Nb3Sn magnets with operating fields of 15-16 T are considered for the LHC Energy Doubler and a future Very High Energy pp Collider. Due to large coil volume, high critical current density and large superconducting (SC) filament size the persistent current effect is very large in Nb3Sn dipoles al low fields. This paper presents the results of analysis of the persistent current effect in the 15 T Nb3Sn dipole demonstrator being developed at FNAL, and describes different possibilities of its correction including passive SC wires, iron shims and coil geometry.
 
slides icon Slides THA1CO04 [3.440 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THA1CO04  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA2IO01 Specifics of Electron Dynamics in High Energy Circular e+e Colliders ion, sextupole, luminosity, impedance 1071
 
  • Q. Qin, J. Gao, H. Geng, P. He, D. Wang, N. Wang, Y. Wang, Y. Zhang
    IHEP, Beijing, People's Republic of China
 
  At the energies envisioned for the FCC-ee the synchrotron radiation produces not only closed orbit effects but also some dynamics effects including strong "beta-synchrotron" coupling due to radiation in the final focus quadrupoles. Past experience with LEP and other machines as well as the implications for the new wave of circular electron collider proposals will be discussed.  
slides icon Slides THA2IO01 [6.536 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THA2IO01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)