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★ With the discovery of the Higgs boson exploration will continue to search for 
beyond the standard model (BSM) physics.

★ The energy scale for new physics is known to be in the multi-TeV range.

★ A 100 TeV proton-antiproton collider is proposed with luminosity of 1034 cm−2s−1, 
and 200 km circumference ring using 8 Tesla NbTi magnets.

★ Advantages in pp collision are presented, such as higher cross sections for 
high mass production and synchrotron radiation reduction.

★ Key aspects to achieve high luminosity include increasing p momentum 
acceptance, in a Fermilab-like antiproton source, and more antiproton cooling.



★ Proton antiproton colliders have shown to 
be competitive: CERN (W & Z bosons), 
Fermilab (Top quark).

★ The cross section for pp collisions is 
greater than in pp collisions for high 
masses. Antiquarks for production can come 
directly from an antiproton, so detector pileup 
is reduced.

★ Scaling to a 200 km pp ring, the SR is 
reduced from 35 to 1.75 W/m compared 
with a 100 km ring.

★ Higher cross section reduces the 
synchrotron radiation: lower beam current 
can produce the same rare events rates.

★ A pp collider only requires one ring 
instead of the two needed for a pp 
collider.

 Figure 1. Feynman diagrams for W’ production in (a) qq 
collision, and (b) qq collision (t channel). 

Figure 2. W’ cross section as a function of the mass 
using pp and pp̄ collisions with Ecm = 100 TeV.
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b) Debuncher Ring: 
➢ Antiprotons are stochastically precooled 

during 2.2 s.
➢ Emittance  reduction of 300 to 30 ᶞm.

c) Accumulator Ring: 
➢ Store the cooled p̄‘s (Stacking rate of 25 × 

1010 p̄ /hr). 
➢ Additional stochastic cooling is done.   
➢  Emittance reduction of 30 to 3 ᶞm.

d) Recycler Ring: 
➢ Additional  p̄‘s storage (up to 600 x 1010 )
➢ Stochastic and electron cooling.
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a) Target Station: 

➢ ~38 x 1010 p̄/hr antiprotons (8.9 GeV) are 
created. 

Fermilab Antiproton Source
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     PBurn rate = ᶥL = 540 x 1010/hr   
(ᶥ = 153 mbarn, total proton/antiproton cross section for Ecm = 100 TeV)

      The Fermilab Debuncher cooled ~40 x 1010 p/hr, 
       12x more antiprotons are needed to keep up the burn rate

❖ Magnetic quadrupoles provide the final  focusing of the 
           beam for the collision.

❖ Using Mad-X the ᶔ* is fixed and the the Tevatron Inner 
Quadrupole System is scaled in order to get ᶔx,max = ᶔy,max

❖ Nb3Sn quadrupoles are required (~13 T)

❖ Quadrupoles Aperture = 40 mm

❖ More central pp events allow shorter detector and low ᶔ*.
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    Taking as reference the Tevatron Luminosity:

Number of 
Bunches

Betatron value 
in the IP

ᶕ = Ebeam/mp

Revolution 
frequency

Number of 
particles per 

bunch

Emittance

10x bunches (10 x 36) to achieve a luminosity of 1034cm−2s−1  

ᶔ* in the Interaction Region 
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❖ In Fermilab only antiprotons with momentum acceptance 

of 8.9 GeV/c ± 2% were selected.

❖  The goal is to collect more antiprotons: 11 GeV/c ± 24%.

❖ Disperse the beam into 12 different momentum channels.

FQ
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MS
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DQ

Li Lens

-1.8 T
 Dipole

Momentum distribution of the antiprotons produced by a 120 
GeV proton beam hitting a tungsten target. (C. Hojvat and A. 
Van Ginneken, Nucl. Instrum. Meth. 206, 67(1983))

G4beamline simulation

          Beam Separation and transportation:

➢ The initial beam (11 GeV/c ± 24%) enters the 18.6 cm Li 
Lens, and then is spread by a magnetic dipole.

➢ To divide the beam: an electrostatic septa ES and two 
magnetic septa MS to increase the separation.

➢ FQ and DQ quadrupoles to transport the beam. Momentum Distribution

Initial Beam

Li Lens: r = 1 cm, L = 18.6 cm, I = 500 kA 
ES: L = 6m, E = 1 MV/m, gap = 0.30 m, septum = 0.2 mm
0.1 T MS: L = 3.5 m, height = 1 m, septum = 4 mm 
1.0 T MS: L = 3.0 m, height = 1 m, septum = 20 mm
FQ & DQ: L = 0.66 m,  R = 1.0 m, Gradient = ±2.0 T/m
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An initial beam with momentum acceptance p = 11.0 GeV/c ± 24% is divided to get finally 12 beams 
with momentum acceptance of about ± 2%.

The Channel is 141 m long 
90% transmission

Momentum DistributionMomentum Distribution



Debuncher/momentum equalizer ring

➢ Each Debuncher phase rotates the beam to 
lower the momentum spread and also ramp the 
beam central momenta up or down to 8.9 
GeV/c.

➢ The central momenta of all 12 channels would 
be equalized.

Accumulator Ring

➢ Two 25 x 1010 p̄/hr accumulator rings can 
keep up with one 40 x 1010 p̄/hr debuncher 
output rate.

➢ Antiprotons are cooled 2x faster.
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To cool 12x more antiprotons, 12 independent 
cooling systems would be implemented.

Beam Cooling: Reduce the energy spread and angular divergence of the beam.



➢ Electrons can cool large numbers of low emittance antiprotons in one ring.

➢ Electron cooling rate increases as ᶕ-2ᶙ, where ᶙ is the ring fraction occupied by electrons.  

➢ Lowering ᶕ by a factor of 3 and increasing ring fraction by 10, cooling rate would increase by 90 
versus what was achieved at FNAL.
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In Fermilab

100 TeV pp collider Layout

In Texas (USA)

87 km

200 km ring

➢ 200 km collider ring connected to the SSC 
(Superconducting Super Collider) existing 
tunnel (~45% complete). 

➢ Texas has a homogeneous soft rock 
composition allowing rapid and cheaper 
tunnel boring.

➢ Fermilab has the advantage of existing 
infrastructure.

➢ Injector ring could be built first and used as a 
collider.  The 50 TeV ring would be an upgrade.
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Cost/m 200 km tunnel

CERN
(Molasse/limestone)

$39,000 100 km limit

FERMILAB 
(Dolomite)

$15,000 $3 billion

Texas
(Chalk/marl)

$6,000 $1.2 billion

Tunneling costs for 4 m diameter tunnel*

* M. Breidenbach and W. Barletta, ESS-DOC-371

Tunneling-time estimate

Length 
(km)

Volume of rock 
 (million m3)

Time
 (years)

Tunneling 
Machines

LEP 27 0.3 4 3

Channel Tunnel 3 x 50 5.6 6 11

200 km Tunnel 
(Texas) 200 2.5 3✝ 4

✝Rock in Texas is faster to boring ~45 m/day based on SSC tunneling rates 
 (P. McIntyre - Texas A&M University)  

* $0.5M / magnet x 1232 magnets = $0.6 billion (LHC)

Energy
(TeV)

Dipole Field
(T)

Dipole Cost
(T-m)

Total Cost 
estimate

Injector 20 3 $1000
 (Superferric magnet) $0.42 Billion

Collider Ring 50 8 $2000
 (LHC single aperture magnet)

$2.2 Billion

Main Dipole Magnets Cost 

❖ 3 or 4.5 T superferric magnets 
use about half as much NbTi 
per T/m as 8 T cosᶚ magnets.

❖ A 100 Km collider (100 TeV) 
requires expensive Nb3Sn 16 T 
magnets
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★ A high luminosity 100 TeV proton-antiproton collider is a competitive option as a 
future collider.

★ This collider reduces synchrotron radiation and pile up as compared to a 100 TeV 
pp collider, due to higher rare event cross sections.

★ To get high luminosity, 12x more antiprotons would be collected and cooled with 
12 independent cooling systems.

★ New Quadrupole Inner System to obtain low ᶔ* (14 cm).

★ Tunneling time would be faster and cheaper in Texas.

★ Low cost 3 T and 8 T magnets (NbTi).

★ Antiprotons would be recycled during runs without leaving the collider ring, by 
joining them to new bunches with synchrotron damping. The longitudinal 
damping time is two hours.
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