

FNAL Accelerator Complex Upgrade Possibilities

Ioanis Kourbanis NAPAC16 13 October 2016

Outline

- Fermilab Accelerator Complex
 - Linac
 - Booster
 - Main Injector
 - Recycler
- 700KW.
- 1.2 MW (PIPII).
- 2.5 MW (PIPIII).
- Beyond 2.5 MW.
- Summary

Fermilab Accelerator Complex

• Fermilab's Accelerator Complex has been re-configured for high power operations

10/13/2016

Linac

- Upgraded to 400 MeV
- Replaced the Cockcroft-Walton with an RFQ in 2012.
- Old part of the Linac (up to 116 MeV) uses Drift tubes powered by the RCA 7835 Triodes (single vendor).

10/13/2016

Booster

- Booster uses combined function magnets with exposed laminations.
- Crosses transition without a gamma-t jump.
- The original RF cavities were recently refurbished to allow 15 Hz beam operations.
- The RF system was upgraded with SS Drivers and new Anode Supplies.
- Three new RF cavities were installed to increase reliability.

focusing

defocusing

Main Injector (MI)

- Commissioned in 1999.
- Seven times the Booster circumference.
- All new dipole magnets with sagitta.
- Most of the quad magnets are recycled from the old Main Ring.
- Uses the old Main Ring cavities upgraded with SS Drivers.
- Large admittance.
- Crosses transition with no gamma-t jump.
- Accelerates from 8-120 GeV with 240 GeV/sec

Recycler (RR)

- Fixed energy storage Ring located in the MI tunnel.
- Same size and same lattice with MI.
- 344 combined function magnets and 86 quad made out of permanent magnets.
- Two phase trombones for tune corrections.
- Was designed to store and cool antiprotons.

10/13/2016

Achieving 700 KW

- Reduce the MI Cycle Time!
 - Transform the Recycler into a proton stacker and slip stack 12 Booster batches while MI is ramping.
 - Increase the beam power by a factor of 1.8 with only a 10% increase in the beam intensity (12 Booster batches instead of 11).
 - The power losses increase by the same factor also.

Slip stacking

- Beam separation depends on the Injector rep rate.
- Figure of merit Δf/fs
- Process ~95% efficient.
- Losses have to be controlled.

Slip Stacking simulations

10/13/2016

Loss Control

- MI Collimators for un-captured beam.
- Recycler collimators for beam lifetime losses.
- Gap Clearing Kickers for beam in the injection gap.

10/13/2016

Beam Power and Integrated beam since 2013

- Beam power gradually increased by slip stacking more Booster batches.
- We have been running with average power of 550 KW to NuMI. target before the summer shutdown with SY120 (10% of timeline).
- Expect to ramp to 700 KW after the shutdown.

PIP II (1.2 MW)

- Replace the current proton source and Linac with a new 800 MeV superconducting Linac with CW capability.
- Increase the current Booster rep rate to 20 Hz and the intensity per pulse by 50%.
 - Rep rate increase reduces slip stacking losses and increases the Booster 8 GeV Beam power.
- Slip stack and accelerate 50% more beam intensity in Recycler and MI.
- Decrease the MI cycle time to 1.2 sec from 1.33 sec.
- Deliver 1.2 MW beam power to the proton target.

Upgrades in current Accelerators required for PIPII.

- Booster has to accommodate beam stripping from the new Linac and accelerate 50% more beam.
 - New injection girder with a new stripping system and absorber.
 - New RF cavities (better cooling, larger aperture).
 - Damper and collimator upgrades.
 - 20 Hz modifications.
- Recycles has to slip stack 50% more beam at 1680 Hz separation
 - New 53 MHz cavities for slip stacking (Higher voltage; CW capability).
- MI has to accelerate 50% more beam.
 - RF Power.
 - Gamma-t jump.

PIPII Linac

14 I. Kourbanis | FNAL Accelerator Complex Upgrade Possibilities

Booster Injection in PIPII

• Longitudinal phase space painting during the 300 turns injection

15 I. Kourbanis | FNAL Accelerator Complex Upgrade Possibilities

10/13/2016

‡ Fermilab

New RF Cavities for Booster

- Plans under way to build a perpendicular biased second harmonic cavity for Booster(G. Romanov et al.)
- The cavity will be used at injection and around transition.

10/13/2016

Slip stacking with 1260 Hz (15 Hz Booster) vs 1680 Hz (20 Hz Booster)

• Slip stacking with larger separation results in better efficiency but larger emittance.

I. Kourbanis | FNAL Accelerator Complex Upgrade Possibilities

10/13/2016

🛟 Fermilab

MI Transition crossing simulations with a gamma-t jump

Gamma t jum base lattice -1.0 -2.5 Gamma t jump base lattice

Lattice Functions

Longitudinal Distributions at 40 GeV

‡ Fermilab

I. Kourbanis | FNAL Accelerator Complex Upgrade Possibilities

MI RF Power Upgrade

• Adding another PA to each of the MI cavities will allow us to accelerate up to 1.1E14 with 240 GeV/sec.

5 Fermilab

10/13/2016

Reaching 2.5 MW (PIPIII)

- Replace the Booster with a new RCS capable of delivering the required protons per bunch.
 - No slip stacking.
- Eliminate Recycler (except the section from 10-30)
 - Small aperture.
 - Decaying field in magnets.
 - Limits the MI options (two machines in same tunnel).
- A new Linac is also an option but serious issues need to be addressed.

🚰 Fermilab

- Where and how we do the 8 GeV stripping.
- A new Ring for stripping will be required
- A new MI RF system will be required.

New RCS

- An new RCS designs exists since 2002. (Proton Driver studies 1,2).
- Latest design had a race track design with no transition crossing.

Parameters	PD1	PD2	
Ring circumference (m)	711.3	474.2	
Linac energy (MeV)	400	600	
Synchrotron peak energy (GeV)	16	8	
Protons per cycle	3×10^{13}	2.5×10^{13}	
Protons per bunch	2.4×10^{11}	3×10^{11}	
Repetition rate (Hz)	15	15	
RF frequency (MHz)	53	53	
Normalized transverse emittance (mm-mrad)	60π	40π	
Beam power (MW)	1.2	0.5	

New RCS Location

	PIP-III (RCS)
MI	
Beam Energy[GeV]	120
Cycle Time[s]	1.45
Protons per pulse[1e12]	190
Power[MW]	2.5
Proton Source	
Injection Energy[GeV]	0.8-2.0
Extraction Energy[GeV]	8
Protons per Pulse[1e12]	32
Beam Power to Recycler/MI[kW]	168
Maximum Beam Power to 8 GeV[kW]	645

22 I. Kourbanis | FNAL Accelerator Complex Upgrade Possibilities

New MI RF

Parameter	Value	Units
Frequency	52.617-53.104	MHz
Max Acc. Rate	240	GeV/sec
Frequency Slew Rate	1.6	MHz/sec
Acceleration Voltage	2.7	MV
Peak Beam Power	6.2	MW
Average Beam Power	3	MW
Peak Voltage	4.7	MV
Average Beam Current	2.3	Α
Fundamental RF Current	3.7-4.1	Α

10/13/2016

- Use Eimac 8973 Power Tetrode as power source
- Output power ~1MW
- Plate dissipation ~1MW

Running above 2.5 MW

- It will be difficult at this stage to increase the beam intensity so we need to consider reducing the MI cycle time.
- It is possible to consider doubling the MI acceleration rate to 600GeV/sec from 240 GeV/sec.
- We will need to add 2 Bend Supplies and 1 Quad PS to every MI service building.
 - This will require civil construction of Service buildings.
 - Double the numbers of feeders
 - 2 additional transformers and harmonic filters.
- We will have enough power in the new RF system to accelerate faster but we will need more volts (more stations).

🚰 Fermilab

10/13/2016

A minimum of 31 RF stations will be needed.

MI Ramp with 600 GeV/sec

Seq.	Туре	Delta t	Time	Momentum	Pdot	Pddot
THE RAMP:						
1	INITI	0.25000	<u>0.25000</u>	8.884	<u>0.00</u>	<u>0.00</u>
2	VPARAB	<u>0.01382</u>	<u>0.26382</u>	8.96	11.00	<u>796.05</u>
3	VPARAB	<u>0.00276</u>	0.26658	9.5	380.00	<u>133591.67</u>
4	VPARAB	<u>0.04184</u>	<u>0.30842</u>	30	600.00	<u>5258.54</u>
5	VPARAB	<u>0.09167</u>	0.40008	85	600.00	<u>0.00</u>
6	VPARAB	<u>0.02542</u>	<u>0.42551</u>	100	580.00	<u>-786.67</u>
7	VPARAB	<u>0.06793</u>	<u>0.49344</u>	119.7	0.00	<u>-8538.07</u>
8	CAPDEP	0.02000	<u>0.51344</u>	<u>119.7</u>	<u>0.00</u>	<u>0.00</u>
9	VPARAB	<u>0.05069</u>	<u>0.56413</u>	105	-580.00	<u>-11442.18</u>
10	VPARAB	<u>0.07965</u>	<u>0.64377</u>	60	-550.00	<u>376.67</u>
11	VPARAB	<u>0.08182</u>	<u>0.72559</u>	15	-550.00	<u>0.00</u>
12	VPARAB	<u>0.03127</u>	<u>0.75687</u>	6.4	0.00	<u>17587.21</u>
13	VPARAB	<u>0.06063</u>	<u>0.81750</u>	7.7945	46.00	<u>758.69</u>
14	VPARAB	<u>0.04737</u>	<u>0.86487</u>	8.884	0.00	<u>-971.09</u>
15	CAPDEP	0.00100	<u>0.86587</u>	<u>8.884</u>	<u>0.00</u>	<u>0.00</u>

25

‡ Fermilab

MI and Proton Source Parameters for the Different Scenarios

	Present	PIP-II	PIP-III (RCS)	Faster Main Injector (RCS)
MI				
Beam Energy[GeV]	120	120	120	120
Cycle Time[s]	1.33	1.2	1.45	0.9
Protons per pulse[1e12]	49	75	190	190
Power[MW]	0.7	1.2	2.5	4.0
Proton Source				
Injection Energy[GeV]	0.4	0.8	0.8-2.0	0.8-2.0
Extraction Energy[GeV]	8	8	8	8
Protons per Pulse[1e12]	4.3	6.4	32	32
Beam Power to Recycler/MI[kW]	38	82	168	271
Maximum Beam Power to 8 GeV[kW]	25	82	645	401

MI Beam Power vs momentum

🛖 🛟 Fermilab

27 I. Kourbanis | FNAL Accelerator Complex Upgrade Possibilities

Summary

- Fermilab Accelerator complex will be running at 700 KW beam power after the current shutdown.
- Planned upgrades (PIPII) will increase the beam power to 1.2MW.
- By replacing the Current Booster and taking advantage of the fast ramping capabilities of Main Injector we can increase the beam power to ~4MW.

