

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

AWAKE - a Proton Driven Plasma Wakefield Acceleration Experiment at CERN Allen Caldwell Max-Planck-Institut für Physik

1. Introduction

2. The AWAKE project

- Status of Run I
- Planning for Run II

3. Perspectives for particle physics

Proton Drivers for PWFA

Proton bunches as drivers of plasma wakefields are interesting because of the very large energy content of the proton bunches.

Drivers:

PW lasers today, ~40 J/Pulse

Electron bunches, FACET, 30J/bunch

Proton bunches SPS 20kJ/bunch, LHC 300 kJ/bunch But - short bunches not available. Self-modulation instability solution ?

Witness:

 10^{10} particles @ 1 TeV \approx few kJ

High energy witness beams could be possible in few stages (at least from energy considerations)

October 11, 2016

Assuming a short proton bunch

NAPAC, Chicago

Modulated Proton Bunch

Micro bunches are generated by a transverse modulation of the bunch density (transverse two-stream instability). The micro bunches are naturally spaced at the plasma wavelength, and act constructively to generate a strong plasma wake. Investigated both numerically and analytically. Modulation should be seeded.

AWAKE

- AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment
 - Use SPS proton beam as drive beam (Single bunch 3e11 protons at 400 GeV)
 - Inject electron beam as witness beam
- Proof-of-Principle Accelerator R&D experiment at CERN
 - First proton driven plasma wakefield experiment worldwide
 - First beam in 2016
- AWAKE Collaboration: 16 Institutes world-wide: John Adams Institute for Accelerator Science,

Budker Institute of Nuclear Physics & Novosibirsk State University CERN **Cockroft Institute** DESY Heinrich Heine University, Düsseldorf Instituto Superior Tecnico **Imperial College** Ludwig Maximilian University Max Planck Institute for Physics Max Planck Institute for Plasma Physics **Rutherford Appleton Laboratory** TRIUMF University College London Univesity of Oslo University of Strathclyde

AWAKE at CERN

A. Caldwell et al., "Path to AWAKE: Evolution of the concept", Nucl. Instrum. Meth. A829 (2016) 3-16; E. Gschwendtner et al. [AWAKE Collaboration], "AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN," Nucl. Instrum. Meth. A829, 76 (2016). AWAKE is installed in
 CNGS Facility (CERN Neutrinos to Gran Sasso)
 → CNGS physics program finished in 2012

October 11, 2016

NAPAC, Chicago

AWAKE: Experimental Program

Phase 1: Understand the physics of self-modulation instability.

AWAKE Experimental Program

- Phase 1: Understand the physics of self-modulation instability.
- Phase 2: Probe the accelerating wakefields with externally injected electrons.

Maximum amplitude of the **accelerating field E** $_z$ as a function of position along the plasma. Saturation of the SMI at ~4m.

October 11, 2016

Proton & laser beam commissioning run September 2016

Proton & laser beam commissioning run September 2016

AWAKE: Plasma Source

- Density adjustable from 10¹⁴ 10¹⁵ cm⁻³
- 10 m long, 4 cm diameter
- Plasma formed by field ionization of Rb
 - Ionization potential Φ_{Rh} = 4.177eV
 - above intensity threshold ($I_{ioniz} = 1.7 \times 10^{12} W/cm^2$) 100% is ionized.
- Plasma density = vapor density
- System is oil-heated: 150° to 200° C
 - \rightarrow keep temperature uniformity
 - \rightarrow Keep density uniformity

Grant Instruments

October 11, 2016

NAPAC, Chicago

Schedule

AWAKE Planning for Run I – until LS2 of the LHC.

After LS2 – proposing Run II of AWAKE (during Run 3 of LHC)

After Run II – particle physics driven applications

High Luminosity

LHC

Goals:

- stable acceleration of bunch of electrons with high gradients over long distances
- 'good' electron bunch emittance at plasma exit

Require:

- Compressed proton beam in SPS
- Short electron bunch with higher energy for loading wakefield
- Density step in plasma for freezing modulation
- Alternative plasma cell developments

Preliminary Run 2 electron beam parameters

Parameter	Value
Acc. gradient	>0.5 GV/m
Energy gain	10 GeV
Injection energy	$\gtrsim 50 \text{ MeV}$
Bunch length, rms	40–60 µm (120–180 fs)
Peak current	200–400 A
Bunch charge	67–200 pC
Final energy spread, rms	few %
Final emittance	$\leq 10 \ \mu m$

Proton beam:

Three important upgrades for the High Luminosity-LHC project that are also relevant for AWAKE:

- 200 MHz and 800 MHz RF upgrade in the SPS (800 MHz is done already)
- Impedance reduction in the SPS
- Increase of the injection kinetic energies in PS Booster (from 50 MeV to 160 MeV) and PS (from 1.4 GeV to 2 GeV)
 - Good for space charge limitation => smaller transverse emittance

Electron Injectors:

- S-band gun: cannot provide parameters in available space (bunch length, peak current)
- X-band gun: interesting technology, 50 MeV electrons in few meter. Expensive to "redevelop" a new gun.

- LWFA :

- Ionization injection : preliminary studies – fields need to be strong; still in linear regime ?

Scalable Plasma sources :

- CERN-MPP-SPC helicon initiative
- Discharge source technology, 10 m cell, is being further developed at UCL.

October 11, 2016

NAPAC, Chicago

Helicon cell

1m prototype in regular operation (B. Buttenschön, O. Grülke, IPP Greifswald)

Target density achieved Uniformity under study.

New effort CERN - IPP – SPC @CERN under consideration

Simulation studies:

- Staging: issue length of gap allowed between plasma cells, length of cells
- Beam loading: study loading as function charge versus bunch length (on-going)
- Emittance preservation: optimal location for injection, parameters of electron bunch
- Tolerances: input to plasma source development
- Density step: optimal location, parameters

Intense simulation campaign will be launched

Freezing the Modulation

... wakefield amplitude quickly drops after the beam gets modulated.

Reason: defocusing regions keep on moving along the beam and destroys the bunches.

Particle Physics Perspectives

Consider:

- Physics with a high energy electron beam
 - E.g., search for dark photons
- Physics with an electron-proton or electron-ion collider
 - Low luminosity version of LHeC
 - Very high energy electron-proton, electron-ion collider

Are there fundamental particle physics topics for high energy but low luminosity colliders ?

I believe – yes ! Particle physicists will be interested in going to much higher energies, even if the luminosity is low.

In general – start investigating the particle physics potential of an AWAKE-like acceleration scheme. Contributions welcome !

Dark Photon Search

Dark matter – what is it ? So far, no experimental hints on particle nature. Interest in low-mass particle solutions increasing; e.g., dark photons.

Light shining through walls experiments ...

e-. 50 - 150 GeV

NA64 – expect 10⁶ electrons/spill; 10¹² electrons for 3 months

AWAKE electron beam driven by SPS proton bunch. Assuming 10⁹ electrons/bunch, would give 3 orders of magnitude increase.

M. Wing, Physics Beyond Colliders Kickoff Workshop, 7/Sep/2016, CERN

NAPAC, Chicago

LHeC-like

Focus on QCD:

- Large cross sections low luminosity (HERA level) enough
- Many open physics questions !
- Consider high energy ep collider with Ee up to O(50 GeV), colliding with LHC proton; e.g. Ee = 10 GeV, Ep = 7 TeV, √s = 530 GeV already exceeds HERA cm energy.

G. Xia et al., Nucl. Instrum. Meth. A 740 (2014) 173.

Create ~50 GeV beam within 50–100 m of plasma driven by SPS protons and have an LHeC-type experiment.

Clear difference is that luminosity currently expected to be $< 10^{30}$ cm⁻² s⁻¹.

VHEeP

(Very High Energy electron-Proton collider)

Choose $E_e = 3$ TeV as a baseline for a new collider with $E_p = 7$ TeV yields $\sqrt{s} = 9$ TeV. Can vary.

- Centre-of-mass energy ~30 higher than HERA.

- Reach in (high) Q² and (low) Bjorken x
 extended by ~1000 compared to HERA.
- Opens new physics perspectives

VHEeP: A. Caldwell and M. Wing, Eur. Phys. J. C 76 (2016) 463

One proton beam used for electron acceleration to then collide with other proton beam

Luminosity ~ $10^{28} - 10^{29}$ cm⁻² s⁻¹ gives ~ 1 pb-1 per year.

Electron energy from wakefield acceleration by LHC bunch

A. Caldwell, K. V. Lotov, Phys. Plasmas **18**, 13101 (2011)

Physics Reach

Total photoproduction cross section – energy dependence ? Fundamental physics question, impact on cosmic ray physics

Virtual photon cross section – observation of saturation of parton densities ? Would provide information on the fundamental structure of the QCD vacuum.

- + BSM physics such as Leptoquarks, quark substructure, etc.
 - C, Chicago

Summary

Proton-driven plasma wakefield acceleration interesting because of large energy content of driver.

Modulation process means existing proton machines can be used.

Goal for AWAKE run I: demonstrate modulation process and proton-driven acceleration of electrons before LS2 of the LHC.

Run II proposal developing: goals are demonstration of stable acceleration and good electron bunch properties.

Long term prospects for proton-driven PWA exciting ! Starting to develop particle physics program that could be pursued with an AWAKE-like beam.