Keyword: diagnostics
Paper Title Other Keywords Page
MOPAB128 Operational Use of Pinger Magnets to Counter Stored Beam Oscillations During Injection at Diamond Light Source injection, kicker, operation, storage-ring 459
 
  • R.T. Fielder, M. Apollonio, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
 
  Diamond uses a four kicker bump injection scheme. Due to a variety of factors it has become more difficult to perfectly match the four kicks while maintaining injection efficiency, resulting in some disturbance to the stored beam during top-up. This has consequences for beamlines which may see degraded beam quality during injections. A gating signal is provided, but this is not appropriate for all experiments, and in any case ideally would not be required. The disturbance to the stored beam can be partly controlled using the existing diagnostic pinger magnets installed in the storage ring. We present here a comparison of different compensation schemes and tests with beamlines, along with initial experiences operating during user beam time. Use of these magnet also provides proof of principle for any future, purpose-built compensation kickers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB128  
About • paper received ※ 18 May 2021       paper accepted ※ 20 May 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB137 Interaction Region Design for DWA Experiments at FACET-II electron, experiment, radiation, alignment 478
 
  • O. Williams, G. Andonian, A. Fukasawa, W.J. Lynn, N. Majernik, P. Manwani, B. Naranjo, J.B. Rosenzweig, Y. Sakai, M. Yadav, Y. Zhuang
    UCLA, Los Angeles, California, USA
  • C.I. Clarke, M.J. Hogan, B.D. O’Shea, D.W. Storey, V. Yakimenko
    SLAC, Menlo Park, California, USA
  • M. Ruelas
    RadiaBeam, Santa Monica, California, USA
  • M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: DOE HEP Grant DE-SC0009914
The extremely intense beam generated at FACET-II provides the unique opportunity to investigate the effects of beam-driven GV/m fields in dielectrics exceeding meter-long interaction lengths. The diverse range of phenomena to be explored, such as material response in the terahertz regime, suppression of high-field pulse damping effects, advanced geometry structures, and methods for beam break up (BBU) mitigation, all within a single UHV vacuum vessel, requires flexibility and precision in the experimental layout. We present here details of the experimental design for the dielectric program at FACET-II. Specifically, consideration is given to the alignment of the dielectric structures due to the extreme fields associated with the electron beam, as well as implementation of electron beam and Cherenkov radiation-based diagnostics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB137  
About • paper received ※ 19 May 2021       paper accepted ※ 17 August 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB140 Gas Sheet Ionization Diagnostic for High Intensity Electron Beams electron, detector, operation, vacuum 489
 
  • N.P. Norvell, G. Andonian, T.J. Campese, A.-L.M.S. Lamure, M. Ruelas, A.Yu. Smirnov
    RadiaBeam, Santa Monica, California, USA
  • N.M. Cook
    RadiaSoft LLC, Boulder, Colorado, USA
  • J.K. Penney
    UCLA, Los Angeles, California, USA
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: Work supported by DOE grant DE-SC0019717
The characterization of high intensity charged particle beams in a minimally interceptive, and non-destructive manner is performed using an ionization diagnostic. In this application, a neutral gas is tailored into a thin sheet, or curtain-like, distribution at the interaction point with an electron beam. The electron beam ionizes the neutral gas in localized space, leaving a footprint of the beam transverse distribution. The ion cloud is subseqeuntly imaged with a series of electrostatic lenses to a detector plane. The resultant image is used in a reconstruction algorithm to reconstruct the beam profile at the interaction point. In this paper, we present progress on the development of this diagnostic for the characterization of high charge, 10GeV electron beams with small transverse distributions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB140  
About • paper received ※ 20 May 2021       paper accepted ※ 10 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB272 Consideration the Prospects of Beam Diagnostic System Upgrade in the Transport Channels of Injection Complex VEPP-5 positron, electron, injection, operation 860
 
  • K.V. Astrelina, F.A. Emanov
    BINP SB RAS, Novosibirsk, Russia
  • F.A. Emanov
    NSU, Novosibirsk, Russia
 
  Transport electron and positron channels from linear accelerator to storage ring of Injection Complex VEPP-5 (BINP, Novosibirsk) have complicated 3D configuration and equipped only with luminophore screens as a beam test. For the regular machine operations the non-destructive beam diagnostic system is required to adjust the electron and positron beam trajectories and minimize the beam losses. The proposal of new beam position monitors (BPM) assembling is considered. Newly added BPMs allow one to control the beam trajectory during operations. Collecting beam position data in several points makes it possible to calculate and correct the beamline parameters: Twiss parameters, dispersion, beam energy variations. The possible configuration of the new BPMs placing is suggested and the rate of beam loss reducing due the additional diagnostics is estimated.  
poster icon Poster MOPAB272 [1.164 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB272  
About • paper received ※ 20 May 2021       paper accepted ※ 02 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB282 Development of a Multi-Camera System for Non-Invasive Intense Ion Beam Investigations ion-source, solenoid, vacuum, experiment 895
 
  • A. Ateş, H. Hähnel, U. Ratzinger, K. Volk, C. Wagner
    IAP, Frankfurt am Main, Germany
 
  The continued popularity of miniaturized cameras integrated into smartphones is leading to further research for more advanced CMOS camera sensors. This made CMOS technology even superior to scientific CCD cameras. Due to the lower power consumption and high flexibility, a multicamera system can be developed more effectively. At the Institute of Applied Physics at Goethe University Frankfurt (IAP) a prototype of a beam induced rest gas fluorescence monitor (BIF) was developed and tested successfully. The BIF consists of x and y single board cameras integrated into the vacuum chamber. A multi-camera system was installed in the LEBT area of the FRANZ project at the IAP within the first diagnostic chamber. This system consists of six cameras. With this equipment it is possible to investigate the beam along a 484 mm path in x and y direction. The developments on the reconstruction and image processing methods are in progress.  
poster icon Poster MOPAB282 [1.139 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB282  
About • paper received ※ 12 May 2021       paper accepted ※ 08 June 2021       issue date ※ 24 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB284 Status of the Dedicated Electron Diagnostic Beamline at AXSIS electron, MMI, dipole, controls 902
 
  • H. Dinter, R.W. Aßmann, F. Burkart, M.J. Kellermeier
    DESY, Hamburg, Germany
  • C. Lechner
    EuXFEL, Schenefeld, Germany
 
  Funding: The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 609920.
AXSIS (Attosecond X-ray Science: Imaging and Spectroscopy) is a compact, accelerator-driven X-ray source currently under construction at DESY Hamburg. It comprises a THz-powered electron gun and THz-driven linac for all-optical electron extraction and acceleration to several MeV with the goal of providing X-rays generated by inverse Compton scattering for photon science experiments. For the commissioning and characterisation of the THz gun and linac the facility includes a dedicated accelerator testing area, for which an electron diagnostic beamline has been designed and is currently under construction. The challenges imposed by the AXSIS project on the development of the diagnostics beamline are the wide ranges of bunch charge (15 fC to 3 pC) and energy (5 MeV to 20 MeV) expected from the THz-driven accelerator as well as the limited available space of only ca. 2.5 metres length. In this contribution we present an overview of the design and the current commissioning status of the electron diagnostic beamline as well as plans for future steps.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB284  
About • paper received ※ 19 May 2021       paper accepted ※ 18 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB293 Electro-Optical Diagnostics at KARA and FLUTE - Results and Prospects electron, laser, storage-ring, experiment 927
 
  • G. Niehues, E. Bründermann, M. Caselle, S. Funkner, A.-S. Müller, M.J. Nasse, M.M. Patil, R. Ruprecht, M. Schuh, M. Weber, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: S.F. was funded by BMBF contract No. 05K16VKA, C. W. by BMBF contract number 05K19VKD. G.N. and E.B. acknowledge support by the Helmholtz President’s strategic fund IVF "Plasma Accelerators".
Electro-optical (EO) methods are nowadays well-proven diagnostic tools, which are utilized to detect THz fields in countless experiments. The world’s first near-field EO sampling monitor at an electron storage ring was developed and installed at the KIT storage ring KARA (Karlsruhe Research Accelerator) and optimized to detect longitudinal bunch profiles. This experiment with other diagnostic techniques builds a distributed, synchronized sensor network to gain comprehensive data about the phase-space of electron bunches as well as the produced coherent synchrotron radiation (CSR). These measurements facilitate studies of physical conditions to provide, at the end, intense and stable CSR in the THz range. At KIT, we also operate FLUTE (Ferninfrarot Linac- und Test-Experiment), a new compact versatile linear accelerator as a test facility for novel techniques and diagnostics. There, EO diagnostics will be implemented to open up possibilities to evaluate and compare new techniques for longitudinal bunch diagnostics. In this contribution, we will give an overview of results achieved, the current status of the EO diagnostic setups at KARA and FLUTE and discuss future prospects.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB293  
About • paper received ※ 19 May 2021       paper accepted ※ 07 July 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB296 Statistical Analysis of 2D Single-Shot PPRE Bunch Measurements photon, radiation, operation, storage-ring 939
 
  • M. Koopmans, J.-G. Hwang, A. Jankowiak, M. Ries, A. Schälicke, G. Schiwietz
    HZB, Berlin, Germany
 
  The pulse picking by resonant excitation (PPRE) method* is used to realize pseudo single-bunch radiation from a complex filling pattern at the BESSY II storage ring. The PPRE bunch is excited in the horizontal plane by a quasi-resonant incoherent perturbation to increase the emittance of this bunch**. Therefore, the synchrotron light of the PPRE bunch can be separated by collimation from the radiation of the main bunch train at dedicated beamlines for timing users. The properties of the PPRE bunch depend on the storage ring settings and on the excitation parameters. It is not trivial to distinguish between the wanted intrinsic bunch broadening and an additional position fluctuation of the PPRE bunch. Using the potential of the new diagnostics beamline with the possibility to observe an additional spatial dimension with a fast streak camera, we introduce a new method to study the properties of the PPRE bunch***. Applying a statistical analysis to a series of single-turn images enables distinguishing between horizontal orbit motion and the broadening of the bunch due to the excitation. Measurements are presented and the results are compared with data from the BPM system.
* K. Holldack et al., Nature Commun. 5 (2014) 4010.
** J.-G. Hwang et al., Nucl. Instrum. Methods A940 (2019) 387.
*** G. Schiwietz et al., Nucl. Instrum. Methods A990 (2021) 164992.
 
poster icon Poster MOPAB296 [2.074 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB296  
About • paper received ※ 19 May 2021       paper accepted ※ 02 June 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB300 Description of the Beam Diagnostics Systems for the SOCIT, SODIT and SODIB Applied Research Stations Based on the NICA Accelerator Complex detector, controls, experiment, radiation 946
 
  • A. Slivin, A. Agapov, A.A. Baldin, A.V. Butenko, G.A. Filatov, K.N. Shipulin, E. Syresin, G.N. Timoshenko, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
  • D.V. Bobrovskiy, A.I. Chumakov, S. Soloviev
    MEPhI, Moscow, Russia
  • I.L. Glebov, V.A. Luzanov
    GIRO-PROM, Dubna, Moscow Region, Russia
  • A.S. Kubankin
    BelSU, Belgorod, Russia
  • T. Kulevoy, Y.E. Titarenko
    ITEP, Moscow, Russia
 
  Within the framework of the NICA project an Innovation Block is being constructed. It includes an applied research station for microchips with a package for Single Event Effects (SEE) testing (energy range of 150-500 MeV/n, the SODIT station), an applied research station for testing of decapsulated microchips (ion energy up to 3,2 MeV/n, the SOCIT station), and an applied research station for space radiobiological research and modelling of influence of heavy charged particles on cognitive functions of the brain of small laboratory animals and primates (energy range 500-1000 MeV/n, the SODIB station). The systems for diagnostics and control of the beam characteristics during the certification and adjustment as well as the systems for online diagnostics and control of the beam characteristics of the SOCIT, SODIT and SODIB applied research stations are described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB300  
About • paper received ※ 19 May 2021       paper accepted ※ 27 May 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB304 Beam Diagnostics for Multi-Objective Bayesian Optimization at the Argonne Wakefield Accelerator Facility emittance, dipole, quadrupole, wakefield 960
 
  • J.P. Gonzalez-Aguilera, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
  • W. Liu, P. Piot, J.G. Power, E.E. Wisniewski
    ANL, Lemont, Illinois, USA
  • R.J. Roussel
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
 
  Particle accelerators must achieve certain beam quality objectives for use in different experiments. Usually, optimizing certain beam objectives comes at the expense of others. Additionally, there are many input parameters and a limited number of diagnostics. Therefore, accelerator tuning becomes a multi-objective optimization problem with a limited number of observations. Multi-objective Bayesian optimization was recently proposed as an efficient method to find the Pareto front for an online accelerator tuning problem with reduced number of observations. In order to experimentally test the multi-objective Bayesian optimization method, a novel accelerator diagnostic is being designed to measure multiple beam quality metrics of an electron beam at the Argonne Wakefield Accelerator Facility. Here, we present a design consisting in a pepper-pot mask, a dipole magnet and a scintillation screen, which allows a simultaneous measurement of the electron beam energy spread and vertical emittance. Additionally, a surrogate model for the vertical emittance was constructed with only 60 observations and without prior knowledge of the objective function nor diagnostics constraints.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB304  
About • paper received ※ 18 May 2021       paper accepted ※ 08 June 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB313 Argonaut - A Robotic System for Cryogenic Environments detector, operation, cryogenics, electron 966
 
  • W. Pellico, N.M. Curfman, M. Wong-Squires
    Fermilab, Batavia, Illinois, USA
 
  Funding: Department of Energy
Fermilab and the HEP community invest significant resources into liquid argon detectors. The largest and most expensive of these detectors will be located in the Deep Underground Neutrino Experiment (DUNE). However, recent experiences have shown that there are limited avenues of monitoring, intervention, and interaction in the internal liquid environment. This proposal shows a technological path that could provide a valuable tool to ensure or at least improve the management of these HEP detectors. The development of a robotic system named Argonaut will demonstrate several technologies including 1) demonstration of suitable mobility of a small robotic device at liquid argon temperatures, 2) demonstration of wireless communication, 3) demonstration of improved diagnostics capabilities - such as tunable optics with motion control, 4) demonstration of interconnectivity of a robotic system with hardware residing within the detector. This initial research will be a seed for extended development in cold robotics and associated technologies. This work will allow FNAL to contribute a significant technology capability to recent efforts to cryogenic detector operations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB313  
About • paper received ※ 19 May 2021       paper accepted ※ 21 May 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB315 Beam Diagnostics for Commissioning and Operation of the FAIR Proton Linac linac, proton, rfq, MMI 972
 
  • T. Sieber, P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • J. Herranz, A. Vizcaino-de-Julian
    Proactive Research and Development, Sabadell, Spain
 
  For the planned antiproton experiments at FAIR a dedicated proton injector Linac is currently under construction. It will be connected via the old UNILAC transfer beamline to SIS18 and has a length of ~30 m. The Linac will accelerate protons up to a final energy of 68 MeV, at a pulse length of 35 µs and a maximum repetition rate of 4 Hz. It will operate at 325 MHz and consists of a new so called "Ladder" RFQ type, followed by a chain of CH-cavities, partially coupled by rf-coupling cells. We have worked out a diagnostics system, which allows detailed measurement and study of all beam parameters during commissioning and later during regular operation. The diagnostics devices will - in a first step - be installed on a diagnostics testbench for stepwise commissioning. We present the concepts for Linac and testbench with some special emphasis on energy measurements with spectrometer and SEM Grid profile measurements.  
poster icon Poster MOPAB315 [3.149 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB315  
About • paper received ※ 14 May 2021       paper accepted ※ 24 June 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB316 Commissioning the New CERN Beam Instrumentation Following the Upgrade of the LHC Injector Chain linac, MMI, electron, instrumentation 976
 
  • F. Roncarolo, S. Bart Pedersen, J.M. Belleman, D. Belohrad, M. Bozzolan, C. Bracco, S. Di Carlo, J. Emery, A. Goldblatt, A. Guerrero, S. Levasseur, A. Navarro Fernandez, E. Renner, H.S. Sandberg, J.W. Storey, J. Tan, J. Tassan-Viol
    CERN, Geneva, Switzerland
  • A. Navarro Fernandez
    UPC, Barcelona, Spain
  • E. Renner
    TU Vienna, Wien, Austria
 
  The LHC injectors Upgrade (LIU) program has been fully implemented during the second long shutdown (LS2), which took place in 2019-20. In this context, new or upgraded beam instrumentation was developed to cope with H beam in LINAC4 and the new Proton Synchrotron Booster (PSB) injection systems which would provide high brightness proton beams in the rest of the injector complex. After a short overview of the newly installed diagnostics, the main focus of this paper will move to the instruments already commissioned with the beam. This will include LINAC4 diagnostics, the PSB H0/H monitor, the PSB Trajectory Measurement System, and the PS beam gas ionization monitor. In addition, particular emphasis will be given to the first operational experience with the new generation of fast wire scanners installed in all injector synchronous.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB316  
About • paper received ※ 19 May 2021       paper accepted ※ 17 June 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB327 Beam Loss Diagnostics System for SKIF Synchrotron Light Source simulation, electron, storage-ring, synchrotron 1012
 
  • X.C. Ma
    BINP, Novosibirsk, Russia
  • S.V. Ivanenko, E.A. Puryga
    Budker Institute of Nuclear Physics, Novosibirsk, Russia
  • A.D. Khilchenko, Yu.I. Maltseva, O.I. Meshkov
    BINP SB RAS, Novosibirsk, Russia
  • Yu.I. Maltseva, O.I. Meshkov
    NSU, Novosibirsk, Russia
 
  The Siberian ring photon source (SKIF) is a new generation synchrotron light source designed and built by the Budker Institute of Nuclear Physics. The beam loss diagnostics system is a tool for monitoring beam loss information. It is widely used in modern large accelerators to provide a basis for diagnosing and locating machine faults, optimizing and debugging working beam parameters, and improving beam lifetime. Two types of beam loss monitor (BLM) will be applied on SKIF: fiber-based Cherenkov beam loss monitor (CBLM) and scintillator-based BLM (SBLM). Multi-mode silica fibers CBLM will be installed on linear accelerator and transfer lines. 128 SBLMs will be placed around the storage ring, dynamic ranges and sophisticated electronic equipment are employed to cover different SKIF operating modes. This article represents the details of design of beam loss diagnostics of SKIF, introduces the simulation and experimental studies of CBLM and SBLM.  
poster icon Poster MOPAB327 [4.893 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB327  
About • paper received ※ 19 May 2021       paper accepted ※ 26 May 2021       issue date ※ 30 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB328 Beam Instrumentation for Linear Accelerator of SKIF Synchrotron Light Source electron, photon, radiation, simulation 1016
 
  • X.C. Ma
    BINP, Novosibirsk, Russia
  • M.V. Arsentyeva, E.A. Bekhtenev, V.M. Borin, G.V. Karpov, Yu.I. Maltseva, O.I. Meshkov, D.A. Nikiforov, O.A. Pavlov, V.G. Tcheskidov, V. Volkov
    BINP SB RAS, Novosibirsk, Russia
  • M.V. Arsentyeva, E.A. Bekhtenev, V.M. Borin, Yu.I. Maltseva, O.I. Meshkov, D.A. Nikiforov
    NSU, Novosibirsk, Russia
  • V.M. Borin
    NSTU, Novosibirsk, Russia
 
  A new synchrotron light source SKIF of the 4th generation is under construction at BINP SB RAS (Novosibirsk, Russia). The linear accelerator is SKIF’s injector to provide 200 MeV electron beam. The set of diagnostics will be applied for tuning of the linear accelerator and measurements of beam parameters from electron RF gun to output of the accelerator. It includes 8 fluorescent screens for the beam transverse dimensions measurement, 2 Cherenkov probes for the beam duration measurement, magnetic spectrometer with range from 0.6 to 200 MeV, and some beam charge and current measurement devices, as Faraday cup, FCT, BPM along linear accelerator. Numerical simulations of diagnostics elements and results of beam dynamics simulations are introduced in paper. Brief description of the design and parameters of each diagnostics system is presented. Possible scenarios of linear accelerator tuning are also discussed.  
poster icon Poster MOPAB328 [2.324 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB328  
About • paper received ※ 19 May 2021       paper accepted ※ 21 May 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB412 Accelerator Production of Mo-99 Using Mo-100 target, radiation, electron, operation 1237
 
  • J.L. McCarter, M.J. Brennan, S.M. Burns, J.T. Harvey, S.W. Kelley, T.A. Montenegro, Q. Schiller
    NorthStar Medical Technologies, LLC, Beloit, USA
 
  Funding: DE-NA0001878
Tc-99m is an essential radionuclide for nearly 40,000 diagnostic nuclear medicine tests in the U.S. each day. Its daily production depends on Mo-99, which must be replenished weekly due to Mo-99’s 2.75 day half-life. Mo-99, in the past, was supplied from uranium fission production, depending on overseas nuclear reactors that average 50 years old. Their age in combination with shipment uncertainties make the availability of Mo-99 fragile and subject to severe shortages. The U.S. now has one domestic, FDA-approved supplier that produces Mo-99, NorthStar Medical Radioisotopes. Currently, NorthStar produces Mo-99 via the irradiation of Mo-98 in a nuclear reactor. In the future, NorthStar will also irradiate Mo-100 with accelerator created x-rays to produce Mo-99. This process will use 2 distinct, 40 MeV, 125 kW average electron accelerators, Rhodotrons produced by IBA. Accelerator produced Mo-99 has several advantages over that produced by reactors, including a dual supply and an ability to adjust irradiation timing to meet radiopharmacy demands, such as Sunday delivery. NorthStar is currently installing and commissioning this accelerator based system, entering production in late-2022.
 
poster icon Poster MOPAB412 [2.150 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB412  
About • paper received ※ 24 May 2021       paper accepted ※ 07 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB067 Production of 120 MeV Gamma-ray Beams at Duke FEL and HIGS Facility FEL, operation, wiggler, radiation 1522
 
  • S.F. Mikhailov, V. Popov, G. Swift, P.W. Wallace, Y.K. Wu, J. Yan
    FEL/Duke University, Durham, North Carolina, USA
  • M.W. Ahmed, M. Sikora
    TUNL, Durham, North Carolina, USA
  • H. Ehlers, L.O. Jensen, L. Kochanneck
    Laser Zentrum Hannover, Hannover, Germany
 
  Funding: This work is supported by the US DoE grant #DE-FG02-97ER41033
In this paper we report extension of the operational energy of the gamma ray beams produced at Duke High Intensity Gamma-ray Source (HIGS) up to ~120MeV, opening up a new high energy region of gamma rays for photonuclear physics research. This achievement is based upon development of radiation robust, thermally stable, high-reflectivity fluoride (LaF3/MgF2) multilayer VUV FEL mirrors, enabling us to maintain stable high intensity FEL lasing at the wavelengths of around 175nm. We discuss the challenges of HIGS operation at high gamma and high electron beam energies with the downstream FEL mirror exposed to extremely hush radiation. The experience of the first HIGS user operation with high intensity, high gamma-ray beam energies (85 and ~120MeV) using these new mirrors is also discussed.
 
poster icon Poster TUPAB067 [1.023 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB067  
About • paper received ※ 30 May 2021       paper accepted ※ 09 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB125 Studies of Particle Losses From the Beam in the EU-XFEL Following Scattering by a Slotted Foil undulator, radiation, FEL, simulation 1681
 
  • A.T. Potter, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
  • W. Decking, S. Liu
    DESY, Hamburg, Germany
  • F. Jackson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  One technique for producing short radiation pulses in an FEL involves the use of a slotted foil in a bunch compressor. However, the scattering of particles from the foil can lead to increased particle losses and the generation of secondary particles. This is a particular concern for high rep-rate FELs, such as the European XFEL, where there are plans to implement the slotted-foil technique for short pulse generation. The study reported here aims to characterise the impact of a slotted foil in the European XFEL on the radiation dose in the front section of one of the undulators. Simulations were performed using BDSIM: this code tracks primary particles along the beamline, models the interaction between particles and accelerator components and tracks secondary particles produced by these interactions. The results indicate the amount of energy deposited in the front section of one of the FEL undulators, and provide a basis for optimisation of the collimation system to keep the energy deposition and radiation doses within acceptable limits.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB125  
About • paper received ※ 19 May 2021       paper accepted ※ 10 June 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB217 Effect of Undulators on Transverse Resonant Island Orbits undulator, operation, dipole, optics 1927
 
  • E.C.M. Rial, J. Bahrdt, P. Goslawski, A. Meseck, M. Ries, M. Scheer
    HZB, Berlin, Germany
 
  For one week in October 2020, BESSY II offered a Two Orbit mode to users for the first time*. In this Two Orbit mode, the existence of transverse resonant island buckets** are exploited to store a second beam in the storage ring as an ’island orbit’, away from the primary beam axis. This mode was offered with free range of motion of the 12 out of vacuum undulators installed at the BESSY II ring. Diagnostics of the island orbit were limited to a single camera monitoring bending magnet radiation from a single dipole. A significant motion of the island orbit was observed on this diagnostic and correlated with undulator motion. This observation is reported, and simulations presented to demonstrate how this motion could arise. Correction schemes are suggested and discussed.
*Two Orbit - a report on the first scheduled week of TRIBs user operation at BESSY II, M. Ries et al, these proceedings
**Proc. IPAC 2016, Busan, S Korea, paper THPMR017, p. 3427
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB217  
About • paper received ※ 19 May 2021       paper accepted ※ 21 June 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB250 Axicon-Based Concentrator for Cherenkov Radiation target, radiation, focusing, simulation 2036
 
  • S.N. Galyamin, A.V. Tyukhtin
    Saint Petersburg State University, Saint Petersburg, Russia
 
  Funding: Work supported by Russian Science Foundation (Grant No. 18-72-10137).
We propose a new type of axisymmetric dielectric target - an "axicon-based concentrator" - which effectively concentrates generated Cherenkov radiation (CR) into a small vicinity of a focus point. It consists of two "glued" bodies of revolution: a hollow axicon and a hollow "lens." A theoretical investigation of the radiation field produced by a charge moving through the discussed radiator is performed for the general case where a charge trajectory is shifted with respect to the structure axis. The idea of a dielectric target with a specific profile of the outer surface and suitable analytical methods were presented and developed in our preceding papers *, **. An essential advantage of the current version of the device is that it allows the efficient concentration of CR energy from relativistic particles, making this device extremely prospective for various applications such as beam-driven THz sources and bunch diagnostic systems.
* S.N. Galyamin et al., Phys. Rev. Accel. Beams 22, 083001 (2019); 22, 109901 (2019).
** A.V. Tyukhtin et al., Phys. Rev. A 102, 053514 (2020).
 
poster icon Poster TUPAB250 [1.255 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB250  
About • paper received ※ 24 May 2021       paper accepted ※ 21 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB270 Thermal Transition Design and Beam Heat-load Estimation for the COLDDIAG Refurbishment vacuum, operation, cryogenics, simulation 2097
 
  • H.J. Cha, N. Glamann, A.W. Grau, A.-S. Müller, D. Saez de Jauregui
    KIT, Eggenstein-Leopoldshafen, Germany
 
  Funding: This work is supported by the BMBF project 05H18VKRB1 HIRING (Federal Ministry of Education and Research).
The COLDDIAG (cold vacuum chamber for beam heat load diagnostics) developed at Karlsruhe Institute of Technology has been modified for more studies at cryogenic temperatures different from the previous operations at 4 K in a cold bore and at 50 K in a thermal shield. The key components in this campaign are two thermal transitions connecting both ends of the bore at 50 K with the shield at the same or higher temperature. In this paper, we present design efforts for the compact transitions, allowed heat intakes to the cooling power margin and mechanical robustness in the cryogenic environment. A manufacture scheme for the transition and its peripheral is also given. In addition, the beam heat loads in the refurbished COLDDIAG are estimated in terms of the accelerator beam parameters.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB270  
About • paper received ※ 12 May 2021       paper accepted ※ 02 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB275 Enhanced Orthogonal Polarization Component Treatment in COTRI Model for Microbunched Beam Diagnostics bunching, radiation, polarization, laser 2113
 
  • D.W. Rule
    Private Address, Silver Spring, USA
  • A.H. Lumpkin
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
We present the results of modifying our coherent optical transition radiation interferometry (COTRI) model’s treatment of the perpendicular polarization of OTR, Iperp. Our previous analytic approximation for Iperp was for beam divergences, sy << 1/g, where g is the Lorentz factor and sy is the rms y-component of the beam divergence. We have replaced our analytical form with a Gaussian quadrature for the convolution of Iperp with the divergence in theta-y. This extends the range of divergences we reliably model to sy > 1/g. Ipar, the parallel polarization in the model, is unchanged. Iperp is polarized along the y-axis and is proportional to the square of the y-component of the beam’s velocity distribution. We illustrate our results with two cases: 1) beam energy E=1 GeV, OTR wavelength 633 nm, Q=235 pC, microbunching fraction, bf=1%, divergences of 0.1-0.7 mrad, and rms beam sizes 2,10, and 30 microns; 2) E=375 MeV, wavelength 266 nm, Q=300 pC, bf=10%, divergences of 0.1-0,7 mrad, and rms beam sizes of 10,25,50, and 100 microns. We will present two cases that would be of interest for the diagnostics of laser-plasma accelerator beams* and pre-bunched FELs**, respectively.
* A. H. Lumpkin et al., Phys. Rev. Lett. 125, 014801 (2020).
** A. H. Lumpkin and D. W. Rule, in Proc., 39th International FEL Conference, FEL 2019 (JACoW Pub., Hamburg, Germany, 2019), pp. 408-411.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB275  
About • paper received ※ 22 May 2021       paper accepted ※ 10 June 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB277 Bunch Length Characterizations for the Solaris Injector LINAC radiation, linac, electron, experiment 2117
 
  • A. Curcio, M.A. Knafel, G.W. Kowalski, R. Panaś, M. Waniczek, A.I. Wawrzyniak
    NSRC SOLARIS, Kraków, Poland
 
  During 2020 the first characterization of bunch length and bunch profile in the Solaris injector LINAC has been performed since the start of its operation. In absence of more sophisticated bunch length diagnostics, we have adopted an inversion algorithm applied to beam energy spectra. In practice, the method applies a transformation matrix which maps the particle energy into the particle longitudinal coordinate along the bunch. The construction of this matrix is made analytically, based on the solution of the Liouville equation for the study of the longitudinal beam dynamics. The analytic approach has been benchmarked with experimental measurements of the beam properties along the machine and cross-checked with other tools, as particle tracking and/or beam optics codes. The final results are presented. Moreover, a new diagnostic station at the end of the LINAC has been installed which will host experiments of coherent radiation emission that will be used to confirm the validity of our observations. Preliminary simulations of the coherent spectra are finally reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB277  
About • paper received ※ 18 May 2021       paper accepted ※ 17 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB280 Quantum Gas Jet Scanner Based Beam Profile Monitors electron, injection, focusing, beam-diagnostic 2128
 
  • N. Kumar, A. Salehilashkajani, C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N. Kumar, A. Salehilashkajani, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work is supported by the HL-LHC-UK project funded by STFC and CERN and the STFC Cockcroft core grant No. ST/G008248/1.
A quantum gas jet scanner-based beam profile monitor is under development at the Cockcroft Institute (CI), the UK for beam diagnostics based on the principle of ionization detection induced in a quantum gas jet interacting with an ionizing primary beam that shall be characterized. It promises superior position resolution and high signal intensity resulting from a strongly focused quantum gas jet. In order to achieve the gas jet with a diameter of less than 100 µm, a novel focusing method exploiting the quantum wave function of the neutral gas atoms, generate an interference pattern with a single maximum acting as an ultra-thin gas jet. An ‘atom sieve’ has been designed for generating the interference pattern, applying the principle of a photon sieve. It will be analogous to a mechanical wire scanner though with a minimal interception. The idea of moving a quantum gas jet through the beam is proposed for transverse profiling. This contribution provides a general overview of the design, working principle, the results obtained from initial measurements carried out at CI and University of Bergen (Norway), for designing the same and possible methods for optimizing the scanner’s design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB280  
About • paper received ※ 19 May 2021       paper accepted ※ 31 May 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB282 Optical Beam Loss Monitor Based on Fibres for Beam Loss Monitoring and RF Breakdown Detection synchrotron, experiment, operation, machine-protect 2136
 
  • N. Kumar, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • N. Kumar, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This project has received funding from STFC under grant reference ST/V001302/1.
Standard beam loss monitors are used to detect losses at specific locations which is not a practical solution for loss monitoring throughout the whole beam-line. Optical fibre beam loss monitors (oBLMs) are based on the detection of Cherenkov radiation from high energy charged particles having the advantage of covering more than 100 m of an accelerator with a single detector. This system was successfully installed at the Australian Synchrotron covering the entire facility for beam loss measurements. Successful measurements were also demonstrated on the Compact Linear Accelerator for Research and Applications (CLARA), UK with sub-metre beam loss resolution. oBLMs are non-invasive monitors for the detection of the beam loss and RF breakdown within particle accelerators, which has been developed by the QUASAR Group based at the Cockcroft Institute/University of Liverpool, UK in collaboration of D-Beam Ltd, UK. This paper discusses the overview of the system, the incorporation of the monitor into the accelerator diagnostic system, calibration experiment of oBLM and future plans for the system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB282  
About • paper received ※ 19 May 2021       paper accepted ※ 02 June 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB283 Feasibility Study of ChDR Diagnostic Device in the LHC radiation, proton, flattop, electron 2139
 
  • K. Łasocha
    Jagiellonian University, Kraków, Poland
  • M. Bergamaschi, M. Krupa, K. Łasocha, T. Lefèvre, S. Mazzoni, N. Mounet, E. Senes
    CERN, Geneva, Switzerland
  • D.M. Harryman
    JAI, Egham, Surrey, United Kingdom
  • P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • A. Potylitsyn
    TPU, Tomsk, Russia
  • A. Schloegelhofer
    TU Vienna, Wien, Austria
 
  In recent years Cherenkov Diffraction Radiation (ChDR) has been reported as a phenomenon suitable for various types of particle accelerator diagnostics. As it would typically work best for highly relativistic beam, past studies and experiments have been mostly focusing on the lepton machines. This contribution investigates the prospects on the utilization of ChDR as a diagnostic tool for the Large Hadron Collider (LHC). Based on theoretical considerations and simulation results we estimate the properties of the expected radiation, both in the incoherent and coherent domain, and we compare them with the requirements of the existing diagnostic systems. We also address the potential problem of the use of dielectric radiators in circular machines, where secondary electrons could potentially lead to the creation of electron clouds inside the beam pipe that may affect the radiator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB283  
About • paper received ※ 14 May 2021       paper accepted ※ 18 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB396 The Thermal Outgassing Rate of Materials Used in Vacuum Systems vacuum, experiment, cathode, radiation 2447
 
  • A.M. Semenov
    BINP & NSTU, Novosibirsk, Russia
  • A. Burdakov, A.A. Krasnov, B.P. Tolochko, A.V. Varand
    BINP SB RAS, Novosibirsk, Russia
  • S.R. Ivanova
    GPI, Moscow, Russia
  • A.A. Krasnov
    NSU, Novosibirsk, Russia
  • M.A. Mikhailenko
    ISSCM SB RAS, Novosibirsk, Russia
  • A.A. Shoshin
    Budker INP & NSU, Novosibirsk, Russia
 
  There are many rarely used materials in vacuum systems that are poorly investigated in terms of vacuum properties. For example, phosphors, scintillating materials, ferrites, various adhesives, etc. In addition, new organic materials are being developed with mechanical properties similar to those of conventional steel. The use of such materials is very promising in vacuum technology. This article presents the thermal degassing performance of several rarely used materials and promising materials for vacuum applications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB396  
About • paper received ※ 18 May 2021       paper accepted ※ 31 August 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB406 Search for New Isotope Production Pathways target, neutron, isotope-production, background 2475
 
  • L.F. Dabill
    Coe College, Cedar Rapids, Iowa, USA
  • A. Hutton
    JLab, Newport News, Virginia, USA
 
  The isotope group at Jefferson Lab is carrying out R&D for producing medically interesting radioisotopes, especially those with theranostic (therapeutic and diagnostic) attributes. Here the search for viable production mechanisms has been expanded to multi-step reactions where a daughter is produced from the target and decays into a medically interesting granddaughter radioisotope. It is difficult to find efficient production routes when investigating both the initial excitation reaction as well as the decay routes leading to medically interesting isotopes. The overall goal of this project is to create a structured code in Python to find these decay routes by automatically exploring the large number of isotopes and their possible decay modes. The program structure is described, and preliminary results are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB406  
About • paper received ※ 19 May 2021       paper accepted ※ 31 May 2021       issue date ※ 14 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB415 Irradiation Methods and Infrastructure Concepts of New Beam Lines for NICA Applied Research radiation, quadrupole, target, detector 2498
 
  • G.A. Filatov, A. Agapov, A.V. Butenko, K.N. Shipulin, A. Slivin, E. Syresin, A. Tuzikov, A.S. Vorozhtsov
    JINR, Dubna, Moscow Region, Russia
  • S. Antoine, W. Beeckman, X.G. Duveau, J. Guerra-Phillips, P.J. Jehanno
    SIGMAPHI S.A., Vannes, France
 
  Nowadays space exploration has faced the issue of radiation risk to microelectronics and biological objects. The new beamlines and irradiation stations of the Nuclotron-based Ion Collider fAcility (NICA) at JINR are currently under construction to study this issue. The beamline parameters, different methods for homogeneous irradiation of targets such as scanning, and beam profile shaping by octupole magnets are discussed. A short description of the building infrastructure, magnet elements, and detectors for these beamlines is also given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB415  
About • paper received ※ 11 May 2021       paper accepted ※ 02 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXA05 Solving for Collider Beam Profiles from Luminosity Jitter with Ghost Imaging luminosity, collider, operation, GUI 2524
 
  • D.F. Ratner, A. Chao
    SLAC, Menlo Park, California, USA
 
  Large accelerator facilities must balance the need to achieve user performance requirements while also maximizing delivery time. At the same time, accelerators have advanced data-acquisition systems that acquire synchronous data at high-rate from a large variety of diagnostics. Here we discuss the application of ghost-imaging (GI) to measure beam parameters, switching the emphasis from beam control to data collection: rather than intentionally manipulating the accelerator, we instead passively monitor jitter gathered over thousands to millions of events to reconstruct the target of interest. Passive monitoring during routine operation builds large data sets that can even deliver higher resolution than brief periodic scans, and can provide experiments with event-by-event information. In this presentation we briefly present applications of GI to light-sources, and then discuss a potential new application for colliders: measuring the transverse beam shapes at a collider’s interaction point to determine both the integrated luminosity and the spatial distribution of collision vertices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXA05  
About • paper received ※ 19 May 2021       paper accepted ※ 27 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB118 Loss Maps Along the ThomX Transfer Line and the Ring First Turn HOM, electron, beam-losses, injection 2874
 
  • A. Moutardier, C. Bruni, I. Chaikovska, S. Chancé, N. Delerue, E.E. Ergenlik, V. Kubytskyi, H. Monard
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
 
  Funding: Research Agency under the Equipex convention ANR-10-EQPX-0051.
We report on studies of the loss maps for particles travelling from the end of the ThomX’s linac along the transfer line to the end of the ring first turn in preparation of the machine commissioning. ThomX is a 50-MeV-electron accelerator prototype which will use Compton backscattering to generate a high flux of hard X-rays. The accelerator tracking code MadX is used to simulate electrons’ propagation and compute losses. These maps may be projected at any localisation along the bunch path or plotted along the bunch path. This information is particularly relevant at the locations of the monitoring devices (screens, position monitors,…) where loss predictions will be compared with measurements.
 
poster icon Poster WEPAB118 [3.173 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB118  
About • paper received ※ 28 May 2021       paper accepted ※ 28 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB282 The Consolidation of the CERN Beam Interlock System operation, controls, interface, timing 3309
 
  • R.L. Johnson, C. Martin, T. Podzorny, I. Romera, R. Secondo, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  The Beam Interlock System (BIS) is a machine protection system that provides essential interlock control throughout the CERN accelerator complex. The current BIS has been in service since 2006; as such, it is approaching the end of its operational lifetime, with most components being obsolete. A second version of the Beam Interlock System, "BIS2", is currently under development and will replace the current system. BIS2 aims to be more flexible by supplying additional on-board diagnostic tools, while also improving the overall safety by adding more redundancy. Crucially, BIS2 increases the number of critical paths that can be interlocked by almost 50%, providing an important flexibility for future additional interlocking requests. BIS2 will come into operation for the LHC in run 4 (2027) and will remain in operation until the end of the planned lifetime of HL-LHC. In this paper, we will focus on the Beam Interlock Controller Manager board (CIBM), which is at the heart of BIS2. Since this module works closely with many other systems that are similar in design to those in BIS1, we will compare how BIS2 improves upon BIS1, and justify the reasons why these changes were made.  
poster icon Poster WEPAB282 [0.378 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB282  
About • paper received ※ 18 May 2021       paper accepted ※ 14 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB327 Sheet Electron Probe for Beam Tomography electron, proton, cathode, simulation 3437
 
  • V.G. Dudnikov, M.A. Cummings, G. Dudnikova
    Muons, Inc, Illinois, USA
 
  Funding: Work is funded by DOE SBIR grant DE-SC0021581
An electron beam probe has been successfully used for the determination of accelerated particle density distributions. However, the apparatus used for this diagnostic had a large size and complex design which limit the broad use of this diagnostic for tomography of accelerated bunches. We propose a new approach to electron beam tomography: we will generate a continuous sheet of electrons. As the ion beam bunches pass through the sheet, they cause distortions in the distribution of sheet electrons arriving at CCD device on the other side of the beam that is interpreted to give a continuous measurement of the beam profile. The apparatus to generate the sheet beam is a strip cathode, which, compared to the scanning electron beam probe, is smaller, has a simpler design and less expensive manufacturing, has better magnetic shielding, has higher sensitivity, higher resolution, has better accuracy of measurement and better time resolution. With this device, it is possible to develop almost ideal tomography diagnostics of bunches in linear accelerators and in circular accelerators and storage rings.
 
poster icon Poster WEPAB327 [0.640 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB327  
About • paper received ※ 19 May 2021       paper accepted ※ 15 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXA02 Overview of the Micro-Bunching Instability in Electron Storage Rings and Evolving Diagnostics operation, bunching, electron, simulation 3686
 
  • M. Brosi
    KIT, Karlsruhe, Germany
 
  The micro-bunching instability is a longitudinal instability that leads to dynamical deformations of the charge distribution in the longitudinal phase space. It affects the longitudinal charge distribution, and thus the emitted coherent synchrotron radiation spectra, as well as the energy distribution of the electron bunch. Not only the threshold in the bunch current above which the instability occurs, but also the dynamics above the instability threshold strongly depends on machine parameters, e.g., natural bunch length, accelerating voltage, momentum compaction factor, and beam energy. All this makes the understanding and potential mitigation or control of the micro-bunching instability an important topic for the next generation of light sources and circular e+/e colliders. This presentation will give a review on the micro-bunching instability and discuss how technological advances in the turn-by-turn and bunch-by-bunch diagnostics are leading to a deeper understanding of this intriguing phenomenon.  
slides icon Slides THXA02 [23.626 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THXA02  
About • paper received ※ 19 May 2021       paper accepted ※ 23 July 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB064 LUMOS: A Visible Diagnostic Beamline for the Solaris Storage Ring electron, emittance, synchrotron, storage-ring 3901
 
  • R. Panaś, A. Curcio, A.I. Wawrzyniak
    NSRC SOLARIS, Kraków, Poland
 
  LUMOS is a diagnostic beamline which operates in the visible region. It was installed in the Solaris storage ring during summer 2019. The first light was observed at the beginning of December 2019. During 2020 the beamline was commissioned and equipped with a streak camera setup. Currently, LUMOS allows to analyze far-field and near field images of synchrotron light for transverse beam profile measurements. Moreover, using the streak camera setup, it is also possible to investigate the bunch length, the filling pattern and the longitudinal beam profile changes with respect to the different condition (ramping, 3rd harmonic cavities tuning, etc.). During the presentation the optical setup to be presented along with the measurements conducted with it.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB064  
About • paper received ※ 19 May 2021       paper accepted ※ 07 July 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB205 On-Line Retuning of ISAC Linac Beam with Quadrupole Scan Tomography quadrupole, ISAC, MEBT, rfq 4187
 
  • O. Shelbaya, R.A. Baartman, P.M. Jung, O.K. Kester, S. Kiy, T. Planche, Y.-N. Rao, S.D. Rädel
    TRIUMF, Vancouver, Canada
 
  The method of tomographic reconstruction has been in use at TRIUMF and elsewhere for several years, allowing for the beam diagnostic extraction of elements of the beam matrix on-line. One of the more recent applications of the technique at ISAC consists of using the measured density distribution as the input parameters for a real-time tune re-computation. This technique is advantageous since it does not require installation of dedicated emittance meters, but can instead be carried out with existing position monitors. Instead of requiring an operator to manually re-tune quadrupoles in a matching section, which can be time consuming, the technique allows for a fast and reproducible means to precisely control the beam and can be proceduralized for use by operators tuning the machine.  
poster icon Poster THPAB205 [0.468 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB205  
About • paper received ※ 18 May 2021       paper accepted ※ 08 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB251 Efficient Terahertz Generation by Tilted-Pulse-Front Pumping in Lithium Niobate for the Split-Ring Resonator Experiment at FLUTE electron, laser, experiment, vacuum 4299
 
  • M. Nabinger, E. Bründermann, S. Funkner, B. Härer, A.-S. Müller, M.J. Nasse, G. Niehues, R. Ruprecht, J. Schäfer, T. Schmelzer, N.J. Smale
    KIT, Karlsruhe, Germany
  • M.M. Dehler, R. Ischebeck, M. Moser, V. Schlott
    PSI, Villigen PSI, Switzerland
  • T. Feurer, M. Hayati, Z. Ollmann
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
 
  Funding: This work is co-funded via the European Union’s H2020 research and innovation program, GA No 730871, ARIES.
A compact, longitudinal diagnostics for fs-scale electron bunches using a THz electric-field transient in a split-ring resonator (SRR) for streaking will be tested at the Ferninfrarot Linac- Und Test- Experiment (FLUTE). For this new streaking technique, intensive THz pulses are required, which will be generated by laser-based optical rectification. We present a setup for generating THz pulses using tilted-pulse-front pumping in lithium niobate at room temperature. Excited by an 800 nm Ti:Sa pump laser with 35 fs bandwidth-limited pulse length, conversion efficiencies up to 0.027% were achieved. Furthermore, the status of the SRR experiment is shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB251  
About • paper received ※ 19 May 2021       paper accepted ※ 14 July 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXC04 Time-Resolved H Beam Emittance Measurement at the SNS Linac Using a Laser Comb laser, emittance, neutron, beam-diagnostic 4545
 
  • Y. Liu, A.V. Aleksandrov, C.D. Long
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
We proposed and demonstrated a novel technique to measure time-resolved transverse emittances of the hydrogen ion (H) beam in a 1-GeV high-power accelerator. The measurement is performed in a non-intrusive manner by using laser comb - laser pulses with controllable multi-layer temporal structure generated from a fiber-based master laser oscillator and diode-pumped solid-state laser amplifiers. The technique has been applied to the transverse emittance measurement of 1-GeV H beam at the Spallation Neutron Source (SNS) high energy beam transport (HEBT). More than 20 time-resolved emittances have been simultaneously measured within a macro-pulse, a single mini-pulse, or a single bunch of the 1.4-MW neutron production H beam from one measurement.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXC04  
About • paper received ※ 18 May 2021       paper accepted ※ 08 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXC05 Gas Jet In-Vivo Dosimetry for Particle Beam Therapy operation, proton, cyclotron, GUI 4548
 
  • J. Wolfenden, N. Kumar, A. Salehilashkajani, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • N. Kumar, A. Salehilashkajani, C.P. Welsch, J. Wolfenden, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work is supported by the HL-LHC-UK project funded by STFC and CERN and the STFC Cockcroft core grant No. ST/G008248/1.
Medical applications of charged particle beams require a full online characterisation of the beam to ensure patient safety, treatment efficacy, and facility efficiency. In-vivo dosimetry, measurement of delivered dose during treatment, is a significant part of this characterisation. Current methods offer limited information or are invasive to the beam, meaning measurements must be done offline. This contribution presents the development of a non-invasive gas jet in-vivo dosimeter for treatment facilities. The technique is based on the interaction between a particle beam and a supersonic gas jet curtain, which was originally developed for the high luminosity upgrade of the large hadron collider (HL-LHC). To demonstrate the medical application of this technique, an existing HL-LHC test system with minor modifications will be installed at the University of Birmingham’s 35 MeV proton cyclotron, which has properties comparable to that of a treatment beam. This contribution presents the design and development of this test setup, plans for initial benchmarking measurements, and plans for a future optimised medical accelerator gas jet in-vivo dosimeter.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXC05  
About • paper received ※ 18 May 2021       paper accepted ※ 23 July 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)