Statistical Analysis of 2D Single-Shot PPRE-Bunch Measurements

Marten Koopmans, J.-G. Hwang, A. Jankowiak, M. Ries, A. Schälicke, G. Schiwietz Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Berlin, Germany

Motivation

MOPAB296

- At BESSY II pseudo single bunch radiation in a complex multi bunch fill pattern is realized by Pulse-Picking by Resonant Excitation (PPRE)
- The PPRE bunch is excited in the horizontal plane to increase its emittance and the radiation can be separated by the users
- Difficult to distinguish between broadening and/or position fluctuation
- Using the potential of the new diagnostics beamline we introduce a new statistical method to study the properties of the PPRE bunch

Measurement vs. Excitation Amplitude

- Measurement of horizontal PPRE bunch motion and size for variable excitation amplitude (standard is at 0.5 V)
- Results converted to actual bunch units by orbit calibration
 - \Rightarrow 1 Pixel at streak camera $\approx 10\,\mu\text{m}$ at bunch orbit
- Results for PPRE and camshaft bunch (res. limit for low size)

Analysis Method and Example

 Compare the photon distribution in both dimensions in single shot streak camera images to obtain information on bunch motion and bunch size

• Comparison of the PPRE bunch motion with bunch-by-bunch feedback (BBFB) system data, normalized by hor. β -function at source point

Measurement vs. Excitation Frequency

• Expected hor. fluctuation and from that hor. motion:

- Similar as above: PPRE bunch size and hor. motion measured as function of the excitation frequency (standard is at 1057.607 kHz)
- Comparison of normalized hor. motion measured with streak and BBFB and hor. beam size measured with streak camera

• Peak structure from horizontal tune at 1060 kHz and sidebands (from synchrotron tune): At the horizontal tune the motion is maximized, while bunch size is largest at the synchrotron sidebands

Summary and Outlook

• PPRE Motion and beam size can be detected simultaneously with the 2D

$$\sigma_{\text{pos},x}^{(\text{stat})} = \langle \sigma_x \rangle / \sqrt{N_{\text{eff}}^t} = 4.2 \text{ Pixel}$$

$$\sigma_{\text{pos},x}^{(\text{orbit})} = \sqrt{\sigma_{\text{pos},x}^{(\text{meas}) 2} - \sigma_{\text{pos},x}^{(\text{stat}) 2}} = 4.5 \text{ Pixel}$$

• Important result: Less orbit fluctuation compared to hor. bunch size $\langle \sigma_x \rangle$

single shot measurements using the streak camera

- Important tool to ensure that the orbit fluctuation is low compared to hor.
 beam size in user operation
- Successful excitation amplitude and frequency tests, results agree with measurements with the bunch-by-bunch feedback (BBFB) system

KEY REFERENCES

- [1] A. Jankowiak et al., eds., "BESSY VSR Technical Design Study", Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Germany, June 2015. DOI: 10.5442/R0001
- [2] G. Schiwietz et al., "Bunch-resolved diagnostics for a future electron-storage ring", in: *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 990, pp. 164992/1–13, 2021, DOI: 10.1016/j.nima.2020. 164992
- [3] K. Holldack et al., "Single bunch X-ray pulses on demand from a multi-bunch synchrotron radiation source", in: *Nature communications* 5, pp. 4010/1–7, 2014, DOI: 10.1038/ncomms5010
- [4] J.-G. Hwang et al., "Analytical and numerical analysis of longitudinally coupled transverse dynamics of Pulse Picking by Resonant Excitation in storage rings serving timing and high-flux users simultaneously", in: *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 940, pp. 387–392, 2019, DOI: 10.1016/j.nima.2019.06.053

ACKNOWLEDGEMENT AND PARTNERS

MORE INFORMATION

Marten Koopmans

koopmans@physik.hu-berlin.de Fon: +49 (0)30 8062 13496

https://people.physik.hu-berlin.de/~koopmans/