Keyword: MEBT
Paper Title Other Keywords Page
MOPAB206 The RF Parameters of Heavy Ions Linac cavity, DTL, rfq, linac 679
 
  • A. Sitnikov, G. Kropachev, T. Kulevoy, D.N. Selesnev, A.I. Semennikov
    ITEP, Moscow, Russia
  • M.L. Smetanin, A.V. Telnov, N.V. Zavyalov
    VNIIEF, Sarov, Russia
 
  The new linac for A/Z = 8, output energy 4 MeV/u and 3 mA current is under development at NRC "Kurchatov Institute"-ITEP. The linac consists of Radio-Frequency Quadrupole (RFQ) with operating frequency 40 MHz and two sections of Drift Tube Linac (DTL) with operating frequency 80 and 160 MHz, correspondently. Both DTL has a modular structure and consists of separated individually phased resonators with focusing magnetic quadrupoles located between the cavities. The DTL1 is based on the quarter-wave resonators meanwhile DTL2 is based on IH 5-gap resonators. The 6D beam matching between RFQ and DTLs is provided by magnetic quadrupole lenses and 2-gaps RF-bunchers. The paper presents results of the radio-frequency (RF) design of linac accelerating structures.  
poster icon Poster MOPAB206 [0.559 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB206  
About • paper received ※ 14 May 2021       paper accepted ※ 01 July 2021       issue date ※ 29 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB246 Design of the MEBT for the JAEA-ADS Project linac, emittance, rfq, quadrupole 790
 
  • B. Yee-Rendón, Y. Kondo, F.M. Maekawa, S.I. Meigo, J. Tamura
    JAEA/J-PARC, Tokai-mura, Japan
 
  The Medium Energy Beam Transport (MEBT) will transport a CW proton beam with a current of 20 mA and energy of 2.5 MeV from the exit of the normal conducting Radiofrequency Quadrupole (RFQ) to the superconducting Half-Wave resonator (HWR) section. The MEBT must provide a good matching between the RFQ and HWR, effective control of the emittance growth and the halo formation, enough space for all the beam diagnostics devices, among others. This work reports the first lattice design and the beam dynamics studies for the MEBT of the JAEA-ADS.  
poster icon Poster MOPAB246 [0.827 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB246  
About • paper received ※ 10 May 2021       paper accepted ※ 02 June 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB356 The ESS MEBT RF Buncher Cavities Conditioning Process cavity, vacuum, controls, EPICS 1107
 
  • I. Bustinduy, N. Garmendia, P.J. González, A. Kaftoosian, S. Masa, I. Mazkiaran, L.C. Medina, J.L. Muñoz
    ESS Bilbao, Zamudio, Spain
  • J. Etxeberria, J.P.S. Martins
    ESS, Lund, Sweden
 
  Funding: This work is part of FEDER-TRACKS project, co-funded by the European Regional Development Fund (ERDF) .
As part of the 5 MW European Spallation Source (ESS), the Medium Energy Beam Transport (MEBT) was designed, assembled, and installed in the tunnel since May 2020 by ESS-Bilbao. This section of the accelerator is located between the Radio Frequency Quadrupole (RFQ) and the Drift Tube Linac (DTL). The main purpose of the MEBT is to match the incoming beam from the RFQ both transversely and longitudinally into the DTL. The longitudinal matching is achieved by three 352.209 MHz RF buncher cavities. In this paper, we focus on the RF conditioning process for each set of power coupler and buncher cavity. For this purpose, different tools were developed on EPICS and Python as well as electronics hardware such as Fast Interlock Module (FIM) and timing system. These tools served to automatize both the cavity frequency tuning and the power ramp-up process and will be described in detail in the following sections.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB356  
About • paper received ※ 18 May 2021       paper accepted ※ 09 June 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB176 ESS Proton Beam Trajectory Correction linac, DTL, simulation, ion-source 1809
 
  • N. Blaskovic Kraljevic, M. Eshraqi, N. Milas, R. Miyamoto
    ESS, Lund, Sweden
 
  The proton linac of the European Spallation Source (ESS) is under construction in Lund, Sweden. Beam trajectory correction is essential to mitigate the effect of accelerator element misalignment, constituting the first step to minimise beam losses. The correction will be performed using correctors distributed along the accelerator, based on the beam position monitor (BPM) readout. Three trajectory correction techniques are considered: one-to-one steering, Singular Value Decomposition (SVD), and MICADO (selecting a subset of correctors for the trajectory correction). The performance of the three methods is simulated for the ESS linac and a comparison of the outcomes is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB176  
About • paper received ※ 19 May 2021       paper accepted ※ 15 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB395 Vacuum System Models for Minerva Linac Design vacuum, linac, cavity, rfq 2443
 
  • S. Rey, M.A. Baylac, F. Bouly, E. Froidefond
    LPSC, Grenoble Cedex, France
  • F. Davin, D. Vandeplassche
    SCK•CEN, Mol, Belgium
  • L. Perrot, H. Saugnac
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
 
  The goal of the MYRRHA project is to demonstrate the technical feasibility of transmutation in a 100 MW Accelerator Driven System (ADS) by building a new flexible irradiation complex at Mol (Belgium). The MYRRHA facility requires a 600 MeV accelerator delivering a maximum proton current of 4 mA in continuous wave operation, with an additional requirement for exceptional reliability. Supported by SCK•CEN and the Belgian federal government the project has entered in its phase I: this includes the development and the construction of the linac first part, up to 100 MeV. We here review the MINERVA linac vacuum system modelling studies that enabled to validate the choice of materials and vacuum equipment. The strengths and weaknesses of the vacuum design, highlighted by the models, will be discussed as well as the required improvements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB395  
About • paper received ※ 19 May 2021       paper accepted ※ 01 June 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXB05 Beam Commissioning SPIRAL2 linac, proton, rfq, MMI 2540
 
  • A.K. Orduz, M. Di Giacomo, R. Ferdinand, B. Jacquot, O. Kamalou, J.-M. Lagniel, G. Normand, A. Savalle
    GANIL, Caen, France
  • D. Uriot
    CEA-IRFU, Gif-sur-Yvette, France
 
  The SPIRAL2 injector includes a 5 mA proton-deuteron ECR source, a 1 mA ECR heavy ion source (up to A/Q =3) and a CW 0.73 MeV/u RFQ. It has been successfully commissioned using a diagnostic-plate in parallel with the superconducting linac installation. The green light has been obtained for the LINAC commissioning in July of 2019, starting with the Medium Energy Beam Transport (MEBT) commissioning with protons then with helium in 2020. The MEBT line and tuning process are described. The main experimental results are given, including the emittance and profile measurements which are compared with TraceWin simulations. RFQ output energy variation has been found due to an input energy error, its correction optimizing the source platform voltage is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXB05  
About • paper received ※ 19 May 2021       paper accepted ※ 25 June 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXA01 Beyond RMS: Understanding the Evolution of Beam Distributions in High Intensity Linacs simulation, rfq, quadrupole, space-charge 3681
 
  • K.J. Ruisard, A.V. Aleksandrov, S.M. Cousineau, A.P. Shishlo, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
Understanding the evolution of beams with space charge is crucial to design and operation of high intensity linacs. While the community holds a broad understanding of the mechanisms leading to emittance growth and halo formation, there is outstanding discrepancy between measurements and beam evolution models that precludes prediction of halo losses. This may be due in part to insufficient information of the initial beam distribution. This talk will describe work at the SNS Beam Test Facility to directly measure the 6D beam distribution. Full-and-direct 6D measurement has revealed hidden but physically significant dependence between the longitudinal distribution and transverse coordinates. This nonlinear correlation is driven by space charge and reproduced by self-consistent simulation of the RFQ. Omission of this interplane correlation, common when bunches are reconstructed from lower-dimensional measurements, degrades downstream predictions. This talk will also describe the novel diagnostics supporting this work. This includes ongoing improvements to efficiency of the 6D phase space measurement as well as recent achievement of six orders of dynamic range in 2D phase space.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THXA01  
About • paper received ※ 20 May 2021       paper accepted ※ 23 July 2021       issue date ※ 17 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB205 On-Line Retuning of ISAC Linac Beam with Quadrupole Scan Tomography quadrupole, ISAC, rfq, diagnostics 4187
 
  • O. Shelbaya, R.A. Baartman, P.M. Jung, O.K. Kester, S. Kiy, T. Planche, Y.-N. Rao, S.D. Rädel
    TRIUMF, Vancouver, Canada
 
  The method of tomographic reconstruction has been in use at TRIUMF and elsewhere for several years, allowing for the beam diagnostic extraction of elements of the beam matrix on-line. One of the more recent applications of the technique at ISAC consists of using the measured density distribution as the input parameters for a real-time tune re-computation. This technique is advantageous since it does not require installation of dedicated emittance meters, but can instead be carried out with existing position monitors. Instead of requiring an operator to manually re-tune quadrupoles in a matching section, which can be time consuming, the technique allows for a fast and reproducible means to precisely control the beam and can be proceduralized for use by operators tuning the machine.  
poster icon Poster THPAB205 [0.468 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB205  
About • paper received ※ 18 May 2021       paper accepted ※ 08 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB272 Validation of Two Re-Buncher Cavities under High Beam Loading for LIPAc cavity, LLRF, beam-loading, operation 4343
 
  • D. Gavela, I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
  • I. Moya
    Fusion for Energy, Garching, Germany
  • F. Scantamburlo
    IFMIF/EVEDA, Rokkasho, Japan
 
  Funding: Work partially supported by the Spanish Ministry of Science and Innovation under project AIC-A-2011-0654 and FIS2013-40860-R
Two re-buncher cavities were installed at the Medium Energy Beam Transport line of the LIPAc accelerator, presently being commissioned at Rokkasho (Japan). They are IH-type cavities with five gaps providing an effective voltage of 350 kV at 175 MHz for a nominal operation of 125 mA CW deuterons at 5 MeV. After full conditioning and beamline integration in Europe, the cavities were installed in the accelerator with special care given to the alignment with respect to the rest of the components. The RF line, cooling circuits, and instrumentation were also mounted. The cavities were operated with an FPGA-based LLRF system. A re-conditioning of the cavities was performed in the first place, followed by tests with a pulsed beam with increasing currents. A maximum pulsed beam current of 100 mA was reached while operating the buncher cavities, under which they reached voltages up to 340 kV and 260 kV respectively. As expected, the beam loading was significant, leading to a series of difficulties and required strategies for a good operation that are discussed in this paper. The effect on the beam dynamics, measured by beam position monitors downstream of the bunchers is also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB272  
About • paper received ※ 19 May 2021       paper accepted ※ 02 September 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB319 RF Power Generating System for the Linear Ion Accelerator DTL, rfq, controls, power-supply 4417
 
  • V.G. Kuzmichev, T. Kulevoy, D.A. Liakin, D.N. Selesnev, A. Sitnikov
    ITEP, Moscow, Russia
  • M.L. Smetanin, A.V. Telnov, N.V. Zavyalov
    VNIIEF, Sarov, Russia
 
  An RF power supply system based on solid-state amplifiers has been developed for the linear accelerator of heavy ions. The report contains information on the characteristics and composition of the system, presents the LLRF structure for RFQ and DTL sections.  
poster icon Poster THPAB319 [0.275 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB319  
About • paper received ※ 16 May 2021       paper accepted ※ 16 August 2021       issue date ※ 19 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB324 PIP-II 800 MeV Proton Linac Beam Pattern Generator booster, injection, linac, kicker 4426
 
  • H. Maniar, B.E. Chase
    Fermilab, Batavia, Illinois, USA
  • J.E. Dusatko
    SLAC, Menlo Park, California, USA
  • S. Khole
    BARC, Trombay, Mumbai, India
  • D. Sharma
    RRCAT, Indore (M.P.), India
 
  The PIP2 IT Beam Pattern Generator is the system that synchronizes beam injection and the RF systems between the PIP2 LINAC to the Booster. The RF frequencies of these two accelerator systems are not harmonically related. Synchronization is accomplished by controlling two MEBT Beam Choppers, which select 162.5MHz beam bunches from the LEBT and RFQ to produce an appropriate reduced beam bunch pattern that enables bucket-to-bucket transfer to the Booster RF at 46.46MHz (84th harmonic). This chopping pattern also reduces the beam current to an average of 2mA over the Booster injection, matching the Linac nominal beam current. The BPG also generates the RF frequency/phase reference which the Booster will phase lock to during injection. The BPG is fully programmable, allowing for arbitrary beam patterns with adjustable timing parameters, having a fine adjustment resolution of 38ps. The latter is accomplished using digital signal processing techniques. This paper discusses the design of the BPG, its construction, test results, and operational experience after being integrated into the PIP2 IT test accelerator and concludes with a discussion of the system’s performance and future plans.  
poster icon Poster THPAB324 [0.676 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB324  
About • paper received ※ 18 May 2021       paper accepted ※ 01 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)