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Longitudinal coherent instability

Self-interaction between bunch and emitted coherent
synchrotron radiation (CSR)

Occuring for short bunch length

Substructures in the longitudinal phase space
→ Deformation of bunch profile and energy distribution
→ Change in emitted CSR spectrum

Dynamic bursts due to rising and damping of substructures

Observed amongst others at ALS [1], ANKA [2], BESSY II [3],
CLS [4], DIAMOND [5], Elettra [6], MAX-I [7], MLS [8],
NewSUBARU [9], NSLS VUV Ring [10], UVSOR-II [11], SLC
damping ring [12], SOLEIL [13], SURF III [14]

Observed bursts on microwave signal (CSR),
beam monitor electrode signal
(inversely proportional to bunch length) and
photodiode signal (proportional to energy spread)
U. Arp, doi:10.1103/PhysRevSTAB.4.054401 [14]
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Micro-bunching Instability



M. Ries, MLS [15]
W. Shields, Diamond [5]

J. Byrd, ALS [16]

B. Podobedov, SLC Damping rings [17] E. Roussel, Soleil [18] B. Billinghurst, CLS [4]

3/26 27 May 2021 Miriam Brosi - Micro-bunching Instability in Electron Storage Rings IBPT

Examples at different facilities
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Vlasov-Fokker-Planck equation describes the temporal development of the long. phase space:
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For the micro-bunching instability the impedance is dominated by the CSR impedance ZCSR (f ).
For most simulations either the parallel plates (shielded) or the free-space (no shielding) model are used.
e.g. [12, 19, 20, 21, 22]
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Simulated phase space

5/26 27 May 2021 Miriam Brosi - Micro-bunching Instability in Electron Storage Rings IBPT

Theoretical description



Inovesa
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Substructures in charge distribution
Fluctuations of bunch profile due to synchrotron motion
Dynamic growing and damping of substructures
Bursts in emitted CSR power due to changes in emitted CSR spectra
Dynamics depend on various machine parameters as well as bunch current

Inovesahttps://github.com/Inovesa

doi:10.5281/zenodo.4446191
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Simulation with VFP solver



Observation of longitudinal dynamics
Emitted coherent radiation (THz range)
Longitudinal bunch profile (< ps resolution)
Horizontal bunch size

Relevant time scales
Size of sub-structures (sub-)ps
Bunch spacing / rev. time 2 ns / 368 ns
Repetition rate of bursts ∼ ms
Current dependent changes ∼ seconds/hours

Diagnostic requirements:
High resolution (ps)
High repetition rate (500 MHz / 2.7 MHz)
Long term observation (secs - hrs)
Possibility for synchronised accquisition

KARA
Energy: 0.5 - 2.5 GeV
Circumference: 110.4 m
RF-frequency: 500 MHz
RMS bunch length: 45 ps,
few ps (in short-bunch mode)
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Diagnostics at KARA



Schottky barrier diode detectors

Room temperature

Covering 50 GHz - 1 THz
→ Broad band quasi-optical or waveguide-coupled narrow band

> 4 GHz bandwidth→ Resolves light pulse of each bunch

KAPTURE - KArlsruhe Puls Taking and Ultrafast Readout Electronics

Simultaneous monitoring of all 184 buckets

Continuous turn-by-turn read-out of each bucket (500 MHz)→ 32 Gb/s

Four sampling channels with 12-bit ADC each

Adjustable delay for each channel in 3 ps steps

Local sampling rate up to 300 GSa/s

Alternative: read out multiple detectors simultaneously

New: Version 2 with 8 channels and 1 GHz

ACST GmbH

Virginia Diodes, Inc

M. Caselle, IPAC 2014 Dresden, THPME113

For more see talk
by M. M. Patil
FRXC03
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Fast THz detector and acquisition



Electro-Optical Spectral Decoding
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(N. Hiller, et al., IBIC 2014, MOPD17)

Samples near field of electron bunch
Initially developed for single-pass linacs
Permanently installed in the KARA storage ring
Operational in single-bunch operation
Measures single-shot bunch profiles

KALYPSO KArlsruhe Linear arraY detector for
MHz-rePetition rate SpectrOscopy

(Courtesy by M. M. Patil)

Line array (512, 1024 or 2048 pixel)

Up to 10 Mfps @ 512 pixel

Continuous data aquisition

Combined with grating used as spectrometer

For more see talk

by M. M. Patil

FRXC03
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Longitudinal bunch profile measurement



Measure the horizontal bunch size fx in dispersive section of storage ring

fX =
1
Dx

√
f2
x − Vx · nx

Incoherent synchrotron radiation (visible range)
Radiation from 5° port at dipole magnet
KALYPSO as fast line array detector
turn-by-turn

B. Kehrer, et al., IPAC19, doi:10.18429/JACoW-IPAC2019-WEPGW016 sketch, courtesy by Paul Schütze

KALYPSO
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Energy spread studies



M. Brosi, et al., IPAC19, doi:10.18429/JACoW-IPAC2019-WEPTS015

Onset of substructures
on long. profile Increase of emitted CSR power

No substructures visible
on hor. profile
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Synchronous measurements



M. Brosi, et al., IPAC19, doi:10.18429/JACoW-IPAC2019-WEPTS015

− Bunch length

− Horizontal size

Bunch length and horizontal bunch size increase during burst
Onset of increase of bunch length Delayed increase of hor. bunch size
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Synchronous measurements



M. Brosi, et al., IPAC19, doi:10.18429/JACoW-IPAC2019-WEPTS015

− Bunch length

− Horizontal size

Bunch length and horizontal bunch size increase during burst
Slightly different shape but same repetition rate
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Synchronous measurements



− Moving average

− Moving average

Small shift of long. position during burst
Ampiltude fits to expected shift due to additional loss by increased CSR emission

M. Brosi, et al., IPAC19, doi:10.18429/JACoW-IPAC2019-WEPTS015
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Synchronous measurements



− Moving average

− Moving average

Small shift of long. position during burst
Ampiltude fits to expected shift due to additional loss by increased CSR emission

M. Brosi, et al., IPAC19, doi:10.18429/JACoW-IPAC2019-WEPTS015

CSR as indica
tor for

underlyi
ng dynamics
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Synchronous measurements



Spectrogram:
Representation of fluctuations
in emitted CSR power as a
function of bunch current

Instability threshold visible as
onset of fluctuations

Low bursting frequency
corresponds to repetition rate
of outbursts
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THz measurements - bunch current dependence



Spectrogram:
Representation of fluctuations
in emitted CSR power as a
function of bunch current

Instability threshold visible as
onset of fluctuations

Low bursting frequency
corresponds to repetition rate
of outbursts

instability threshold Ith
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THz measurements - bunch current dependence



Spectrogram:
Representation of fluctuations
in emitted CSR power as a
function of bunch current

Instability threshold visible as
onset of fluctuations

Low bursting frequency
corresponds to repetition rate
of outbursts

fth

13/26 27 May 2021 Miriam Brosi - Micro-bunching Instability in Electron Storage Rings IBPT

THz measurements - bunch current dependence



Spectrogram:
Representation of fluctuations
in emitted CSR power as a
function of bunch current

Instability threshold visible as
onset of fluctuations

Low bursting frequency
corresponds to repetition rate
of outbursts
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THz measurements - bunch current dependence



Spectrogram:
Representation of fluctuations
in emitted CSR power as a
function of bunch current

Instability threshold visible as
onset of fluctuations

Low bursting frequency
corresponds to repetition rate
of outbursts

low bursting frequency
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THz measurements - bunch current dependence



on the low bursting frequency
Reducing damping time with CLIC damping ring wiggler prototype at KARA

No influence on threshold current observed

Shift in low bursting frequency→ due to faster damping of bunch length after outburst

Dependency allows manipulation of dominant, low bursting frequency
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M. Brosi, et al., in Journal of Physics: Conference Series 1067.6 (2018).
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Influence of longitudinal damping time



Uc ≈ 5 · 10−4, VRF = 4 × 300 kV
→ fs = 8.9 kHz

Uc ≈ 5 · 10−4, VRF = 4 × 325 kV
→ fs = 9.8 kHz

Uc ≈ 3 · 10−4, VRF = 4 × 300 kV
→ fs = 7.2 kHz

Fluctuation frequencies depend strongly on operational parameters
especially on momentum compaction factor (Uc) and acceleration voltage (VRF)

Change in threshold current (Ith) and frequency at threshold (fth)
as well as in overall shape of spectrogram

M. Brosi, PhD thesis, KIT, 2020, doi:10.5445/IR/1000120018

15/26 27 May 2021 Miriam Brosi - Micro-bunching Instability in Electron Storage Rings IBPT

Influence of operational parameters
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Different operational parameters result in different frequencies
Even when resulting in same natural bunch length
When given in multiples of the synchrotron frequency it collapses to the same values
⇒ fth/fs unambiguous for a given bunch length

M. Brosi, PhD thesis, KIT, 2020, doi:10.5445/IR/1000120018
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Fluctuation frequency at threshold
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Measurement

Simulation

Steps visible at approximately integer multiples
Correlated to number of substructures in phase space
Steps were also observed at CLS [4]
Not clearly seen in VFP solver simulations based on pure parallel plates CSR model [23]

M. Brosi, PhD thesis, KIT, 2020, doi:10.5445/IR/1000120018
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Fluctuation frequency at threshold



Main instability threshold [1]:

(SCSR)th = 0.5 + 0.12 Π
with shielding parameter Π =

fz,0 d
1/2

h3/2

and CSR strength SCSR =
In d1/3

f
4/3
z,0

with normalized current In =
fz,0Ib

UcWf
2
X
IA

,

Uc =
Ef 2s 2c

fRFfrev
√
e2V 2

RF−U
2
0

and fz,0 =
UcfX
2c fs

Equation derived from fit to simulations

Dip around Π ≈ 0.7 due to weak instability

Bounds predicted to depend not only on shielding,
but also on V = 1/(2c fsgd)

K. L. F. Bane and Y. Cai and G. Stupakov, Phys. Rev. STAB, 2010, Vol. 13, Nr. 10 [22]
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Instability threshold



Main instability threshold [1]:

(SCSR)th = 0.5 + 0.12 Π
with shielding parameter Π =

fz,0 d
1/2

h3/2

and CSR strength SCSR =
In d1/3

f
4/3
z,0

with normalized current In =
fz,0Ib

UcWf
2
X
IA

,

Uc =
Ef 2s 2c

fRFfrev
√
e2V 2

RF−U
2
0

and fz,0 =
UcfX
2c fs

Equation derived from fit to simulations

Dip around Π ≈ 0.7 due to weak instability

Bounds predicted to depend not only on shielding,
but also on V = 1/(2c fsgd)

Measurements fit linear scaling law

Expected "Dip" due to weak instability observed

Dedicated VFP simulations slightly, but
systematically higher

M. Brosi et al., PRAB, 2019, doi:10.1103/PhysRevAccelBeams.22.020701
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Instability threshold



Measured individual threshold currents during
multi-bunch operation

Standard deviation of measured thresholds:
f (Ith) = 0.98 `A

Uncertainty on bunch current measurement:
fIb,th = 0.72 `A

Remaining difference:√
f (Ith)2 − f2

Ib,th
= 0.66 `A

Further studies with even better current
resolution necessary

Small effect compared to changes in
threshold current with operational parameters

M. Brosi et al., IPAC’17, doi:10.18429/JACoW-IPAC2017-THOBA1.
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Threshold currents in multi-bunch operation



From THz signal to spectrogram with KAPTURE in seconds

Cover beam current range with special filling pattern

Read out time signal of each bunch with KAPTURE

M. Brosi et al., Phys. Rev. Accel. Beams 19, 110701 (2016)
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“Snapshot" method with KAPTURE



From THz signal to spectrogram with KAPTURE in seconds

FFT for signal of each bunch

M. Brosi et al., Phys. Rev. Accel. Beams 19, 110701 (2016)
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“Snapshot" method with KAPTURE



From THz signal to spectrogram with KAPTURE in seconds

Sorted by bunch current

M. Brosi et al., Phys. Rev. Accel. Beams 19, 110701 (2016)
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“Snapshot" method with KAPTURE



From THz signal to spectrogram with KAPTURE in seconds

M. Brosi et al., Phys. Rev. Accel. Beams 19, 110701 (2016)

new: 1s normal: 1:30h

Sufficient current resolution

Drastically reduced measurement time

→ Snapshot of machine status (concerning MBI)

Fast scan of machine settings
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“Snapshot" method with KAPTURE



Feedback via main RF-System or kicker cavity

PhLAM & SOLEIL, based on Pyragas time delayed feedback
control (TDFC) [24]
KIT - KARA, based on reinforcement learning [25]

Influence via additional impedances (impedance chamber)
(collaboration between PhLAM, SOLEIL and KIT)
S. Maier et al. these proceedings, TUPAB251

Excitation of stronger micro-bunching using RF amplitude
modulation T. Boltz et al. these proceedings, WEPAB233

T.Boltz et al., ICALEPCS’19,
doi:10.18429/JACoW-ICALEPCS2019-TUCPL06
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Ongoing work on micro-bunching I



Investigation of the micro-bunching instability at
different operation modes e.g.:

Negative alpha operation [26]
(with regards to low-emittance machines)
Injection during micro-bunching instability

Steady State Micro-Bunching at MLS
Collaboration of Tsinghua University Bejing, HZB and PTB
and later Shanghai Light Source
First proof of principle experiment performed [27]
Talk by J. Feikes et al., MOXB01

X. J. Deng et al., PRAB, Vol. 23, Iss. 4,
doi:10.1103/PhysRevAccelBeams.23.044002

23/26 27 May 2021 Miriam Brosi - Micro-bunching Instability in Electron Storage Rings IBPT

Ongoing work on micro-bunching II



Micro-bunching instability is longitudinal, collective instability
caused by CSR self-interaction

Leads to fluctuations in the bunch length, energy spread and
emitted CSR power

Observed and studied at many electron storage rings around the world

Bunch-by-bunch and turn-by-turn diagnostics allows detailed study of
the complex and nonlinear dynamics in the longitudinal phase space

Fast snapshot measurement method provides "instant" characterization

Ongoing studies:

Different operation modes
Influencing and control
Usability of CSR emission in form of Steady State Micro-Bunching
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Summary
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