Keyword: beam-diagnostic
Paper Title Other Keywords Page
TUPAB280 Quantum Gas Jet Scanner Based Beam Profile Monitors electron, injection, focusing, diagnostics 2128
 
  • N. Kumar, A. Salehilashkajani, C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N. Kumar, A. Salehilashkajani, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work is supported by the HL-LHC-UK project funded by STFC and CERN and the STFC Cockcroft core grant No. ST/G008248/1.
A quantum gas jet scanner-based beam profile monitor is under development at the Cockcroft Institute (CI), the UK for beam diagnostics based on the principle of ionization detection induced in a quantum gas jet interacting with an ionizing primary beam that shall be characterized. It promises superior position resolution and high signal intensity resulting from a strongly focused quantum gas jet. In order to achieve the gas jet with a diameter of less than 100 µm, a novel focusing method exploiting the quantum wave function of the neutral gas atoms, generate an interference pattern with a single maximum acting as an ultra-thin gas jet. An ‘atom sieve’ has been designed for generating the interference pattern, applying the principle of a photon sieve. It will be analogous to a mechanical wire scanner though with a minimal interception. The idea of moving a quantum gas jet through the beam is proposed for transverse profiling. This contribution provides a general overview of the design, working principle, the results obtained from initial measurements carried out at CI and University of Bergen (Norway), for designing the same and possible methods for optimizing the scanner’s design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB280  
About • paper received ※ 19 May 2021       paper accepted ※ 31 May 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXC04 Time-Resolved H Beam Emittance Measurement at the SNS Linac Using a Laser Comb laser, emittance, neutron, diagnostics 4545
 
  • Y. Liu, A.V. Aleksandrov, C.D. Long
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
We proposed and demonstrated a novel technique to measure time-resolved transverse emittances of the hydrogen ion (H) beam in a 1-GeV high-power accelerator. The measurement is performed in a non-intrusive manner by using laser comb - laser pulses with controllable multi-layer temporal structure generated from a fiber-based master laser oscillator and diode-pumped solid-state laser amplifiers. The technique has been applied to the transverse emittance measurement of 1-GeV H beam at the Spallation Neutron Source (SNS) high energy beam transport (HEBT). More than 20 time-resolved emittances have been simultaneously measured within a macro-pulse, a single mini-pulse, or a single bunch of the 1.4-MW neutron production H beam from one measurement.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-FRXC04  
About • paper received ※ 18 May 2021       paper accepted ※ 08 July 2021       issue date ※ 20 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)