Beam Diagnostics for Commissioning and Operation of the FAIR Proton Linac

T. Sieber, P. Forck, S. Udrea GSI Helmholtz-Zentrum für Schwerionenforschung, Darmstadt, Germany J. Herranz, A. Vizcaino **PROACTIVE**, Barcelona, Spain

Abstract

PROACTIVE

R&D

PAC 2072

For the planned antiproton experiments at FAIR a dedicated proton injector Linac is currently under construction. It will be connected via the old UNILAC transfer beamline to SIS18 and has a length of ~30 m. The Linac will accelerate protons up to a final energy of 68 MeV at a pulse length of 35 µs and a maximum repetition rate of 4 Hz. It will operate at 325 MHz and consists of a new so called "Ladder" RFQ type, followed by a chain of CH-cavities, partially coupled by rf-coupling cells. We have

FAIR Proton Linac Diagnostics

Parameter	Device	#	Nondestr.	Remarks
Current	Transformer	9	Yes	Dynamic Trans-mission Control
	Faraday Cup	3	No	Mainly as Beam Dumps
Profile	SEM Grids	4	No	Standard
Transv. Emit-tance & Halo Scraping	Slit Grid	3	No	Standard
Position & Mean Energy	Button BPMs	1 4	Yes	Position, TOF & Relative Current
Bunch Shape	New BSM / Feschenko	1	Yes / No	Under Development

MOPAB315

worked out a diagnostics system, which allows detailed measurement and study of all beam parameters during commissioning and later during regular operation. The diagnostics devices will - in a first step - be installed on a diagnostics testbench stepwise for commissioning. We present the concepts for Linac and testbench with some special emphasis on energy measurements with spectrometer and Secondary Electron eMission (SEM-) grid profile measurements.

FAIR @ GSI

The proton Linac:

- Serves as an injector for the FAIR
- synchrotrons
- > High pulse current during 30 μ s multi-turn injection
- Effective acceleration by CH type cavities
- Novel acc. structures ("Ladder" RFQ, CH)
- Sensitive longitudinal beam dynamics
- \Rightarrow High demands for beam diagnostics

Basic Linac parameters

Beam energy	68 MeV
Beam current (op.)	35 mA
Beam current (des.)	70 mA
Beam pulse length	36 µs
Repetition rate	4 Hz
Rf-frequency	325.224 MHz
Tot. hor. emit. (norm.)	2.1 / <i>4.2</i> μm
Tot. mom. spread	≤ ± 10 ⁻³
Linac length	≈ 35 m

SEM Grid Design

SEM Grids designed by PROACTIVE:

- Design based on PCB in combination with mech. stretching system
- \geq 0.1 mm wires, 0.5 mm wire pitch
- detector area 32 x 32 mm
- used for beam alignment/operation and emittance measurement (grids and harps)

Harp Simulations

Model to study the filed configuration for different wire / grid geometries

FAIR

HELMHOLTZ ASSOCIATION

Optimization with respect to highest possible gradient at most compact setup and lowest applied voltage. 10kV/m required to bend electrons away from neighbouring wires

alternative setup to avoid field free region between wires

Test Bench and Spectrometer Design

> Test Bench used for the stepwise commissioning of the pLinac

> Includes all types of beam instrumentation devices to be used with the pLinac after the RFQ (i.e. $E_k \ge 3$ MeV)

> Will be equipped with beam optics (quadrupoles, steerers) and a dipole for energy spread measurements

pLinac RFQ rebuncher / MEBT section, with compact triplet lens to catch divergent beam from RFQ \rightarrow beam transport similar to Test Bench

BPM Mechanical Design

"inter Tank" type, mounted to triplet

"beamline" type

NTG Button

BPM Electronics Scheme

Design calculation for spectrometer, object plane is a slit in the first diagnostic box. Image plane is the slit in front of the final Faraday Cup

(d): Energy spectra before (red) and behind (magenta) a 2 mm wide slit placed after the 125 mm drift

- Effect of space charge ion energy distribution calculated Investigation of energy distribution position dependence Beam transport with pLinac MEBT triplet
- Spectrometer operation requires additional quadrupoles

Beam transport from RFQ, spectrometer mode (upper), transport mode (lower)

Beam transport from CCH3, spectrometer mode (upper), transport mode (lower)