Keyword: cryogenics
Paper Title Other Keywords Page
MOP009 Status and Plans for a SRF Accelerator Test Facility at Fermilab cryomodule, SRF, electron, gun 118
 
  • J.R. Leibfritz, R. Andrews, K. Carlson, B. Chase, M.D. Church, E.R. Harms, A.L. Klebaner, M.J. Kucera, S.L. Lackey, A. Martinez, S. Nagaitsev, L.E. Nobrega, J. Reid, M. Wendt, S.J. Wesseln
    Fermilab, Batavia, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
A superconducting RF accelerator test facility is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beamlines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 810 MeV electron beam with ILC beam intensity. Expansion plans of the facility are underway that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. In addition to testing accelerator components, this facility will be used to test RF power equipment, instrumentation, LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.
 
 
TUP056 BNL 703 MHz Superconducting RF Cavity Testing cavity, resonance, LLRF, simulation 913
 
  • B. Sheehy, Z. Altinbas, I. Ben-Zvi, D.M. Gassner, H. Hahn, L.R. Hammons, J.P. Jamilkowski, D. Kayran, J. Kewisch, N. Laloudakis, D.L. Lederle, V. Litvinenko, G.T. McIntyre, D. Pate, D. Phillips, C. Schultheiss, T. Seda, R. Than, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • A. Burrill
    JLAB, Newport News, Virginia, USA
  • T. Schultheiss
    AES, Medford, NY, USA
 
  Funding: This work received support from Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Brookhaven National Laboratory (BNL) 5-cell, 703 MHz superconducting RF accelerating cavity has been installed in the high-current energy recovery linac (ERL) experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q0 of 1010. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.
 
 
TUP077 Vibrational Measurements for Commissioning SRF Accelerator Test Facility at Fermilab cryomodule, cavity, vacuum, quadrupole 967
 
  • M.W. McGee, J.R. Leibfritz, A. Martinez, Y.M. Pischalnikov, W. Schappert
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02- 07CH11359 with the U.S. Department of Energy.
The commissioning of two cryomodule components is underway at Fermilab’s Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule #1 (CM1) and Capture Cavity II (CC2) which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

 
 
TUP079 Cryomodule Design for 325 MHz Superconducting Single Spoke Cavities and Solenoids cryomodule, cavity, vacuum, solenoid 970
 
  • T.H. Nicol, S. Cheban, R.L. Madrak, F. McConologue, T.J. Peterson, V. Poloubotko, L. Ristori, W. Schappert, I. Terechkine, B.A. Vosmek
    Fermilab, Batavia, USA
 
  Funding: U.S. Department of Energy
The low-beta section of the linac being considered for Project X at Fermilab contains several styles of 325 MHz superconducting single spoke cavities and solenoid based focusing lenses, all operating at 2 K. Each type of cavity and focusing lens will eventually be incorporated into the design of cryomodules unique to various sections of the linac front end. This paper describes the design of a multiple-cavity and solenoid cryomodule being developed to test the function of each of the main cryomodule systems – cryogenic systems and instrumentation, cavity and lens positioning and alignment, conduction-cooled current leads, magnetic shielding, cold-to-warm beam tube transitions, interfaces to interconnecting equipment and adjacent modules, as well as evaluation of overall assembly procedures.
 
 
TUP102 Cryogenic RF Material Testing at SLAC cavity, shielding, niobium, factory 1030
 
  • J. Guo, D.W. Martin, S.G. Tantawi, C. Yoneda
    SLAC, Menlo Park, California, USA
 
  Funding: The work is supported by the US Department of Energy
We have been developing an X-band cryogenic RF material testing system since 2005. By measuring the Q of a hemispherical cavity with the material sample at is flat interchangeable bottom, the system is capable to characterize the surface resistance of different materials at the temperature of 3-300K, as well as the quenching RF magnetic field of the superconducting samples at different temperatures. Using a SLAC X-band 50 MW klystron, the system can measure the quenching H-field of up to 300mT under current setup, with the possibility of further enhancement by changing the RF distribution configuration.
 
 
TUP175 Fabrication of the Jefferson Laboratory Cryogenic Control Reservoirs vacuum, controls, superconducting-magnet, FEL 1157
 
  • M.L. Seely, E.C. Bonnema, D.J. Carvelli, E.K. Cunningham, E.C. Kasper, G.D. Korecky
    Meyer Tool & MFG, Oak Lawn, Illinois, USA
 
  Meyer Tool and Manufacturing of Oak Lawn IL is manufacturing six Cryogenic Control reservoirs CCRs) for the Jefferson Laboratory. Five of the CCRs will be installed in the new Super High Momentum Spectrometer (SHMS) planned for Jefferson Lab's Hall C and the sixth will be installed in Hall D. Both projects are part of the 12 GeV upgrade to the CEBAF accelerator . The CCRs are a cryogenic distribution box designed by the Jefferson Laboratory. They include internal reservoirs in order to provide a continuous supply liquid helium and liquid nitrogen to magnets through periods of disruption in the external supply. This paper discusses the manufacturing and process measures that were implemented in order to meet the Department of Energy requirements for pressure vessels (10CFR851 Appendix A Part 4), to eliminate brazing flux contamination, and to reduce weld distortion in multiple internal vessels. The CCRs will undergo pressure and vacuum testing at Meyer Tool before being installed by the magnet manufacturer.  
 
TUP216 Design of a Helium Phase Separator with Condenser radiation, vacuum, synchrotron, synchrotron-radiation 1214
 
  • F. Z. Hsiao, T.Y. Huang, C.P. Liu, H.H. Tsai
    NSRRC, Hsinchu, Taiwan
 
  This paper presents the design of a helium phase separator with volume of 100 litres. A condenser using a cryocooler for cooling is built into the phase separator to save liquid helium consumption during the test period. The heat loss to the 4.2 K inner vessel is confined within 1W due to the limited 1.5W cooling capacity from the cryocooler. Analysis of mechanical strength and heat load is illustrated.  
 
TUP217 The Application of 400KW DC Bank for Cryogenic System at NSRRC booster, controls, synchrotron, superconducting-magnet 1217
 
  • H.C. Li, S.-H. Chang, W.-S. Chiou, F. Z. Hsiao, T.F. Lin, H.H. Tsai
    NSRRC, Hsinchu, Taiwan
 
  There will be a power sag (>50% drop) several times and annual maintenance of power company every year that course cryogenic system shutdown and take hours to recover. We install the AC UPS to maintain a steady power supply to the control circuit and low power devices to avoid such incidences. However, the AC UPS is not suitable for the 315-kW compressor with inverter due to the harmonic distortion effect and low power factor. We built two sets of 400-kW DC UPS (also called DC Bank system) to keep two 315-kW compressor in full load operation at least 3 minutes when power sag or power cut-off in 2010. The DC Bank was parallel connect to the inverter, thus, will not affect the inverter operation when DC Bank need to maintenance or failure. This paper presents the configuration of DC Bank and the test of the system. Results show that when the inverter is operated at 242KW with main power cut off, the helium compressor is keeping stable operation for 257 seconds by DC Bank support.  
 
TUP218 Design of a Liquid Helium Transfer System for the TPS Project SRF, controls, storage-ring, electron 1220
 
  • H.H. Tsai, M.H. Chang, S.-H. Chang, W.-S. Chiou, F. Z. Hsiao, H.C. Li, M.-C. Lin, T.F. Lin, C.P. Liu, Ch. Wang
    NSRRC, Hsinchu, Taiwan
 
  The construction of the Taiwan Photon Source (TPS) storage ring is under way, to be completed in mid 2012. The new helium cryogenic system is provided from the Linde Company, to be installed after the TPS storage ring is completed. The super conducting radio frequency (SRF) cavities is needed to maintain the electron energy of storage ring and were operated at refrigeration mode such that the cold helium gas from the cavity cryostat is returned to the refrigerator. One distribution valve box and individual segments of multichannel transfer lines is required to supply the liquid helium and liquid nitrogen to the SRF cavities and recover the gas helium and gas nitrogen back to the cryogenic system. This paper is aimed to present the configuration and design features of the LHe transfer system. The heat load and pressure drop calculation of the transfer system was also presented.  
 
TUP219 Temperature-Dependent Calibration of Hall Probes at Cryogenic Temperature vacuum, alignment, undulator, photon 1223
 
  • M. Abliz, C.L. Doose, Y. Ivanyushenkov, I. Vasserman
    ANL, Argonne, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Short-period superconducting undulators (SCUs) are presently being developed for the Advanced Photon Source. Field measurements of the SCUs will be performed at 4.2 K and near 300 K, so temperature-dependent calibration of the Hall probes is necessary. The sensitivity of the Hall probes has been measured at temperatures from 5 K to 320 K over a magnetic field range of ␣1.5 T. It was found that the sensitivity increased as the temperature decreased from 300 K to about 150 K. A specially designed probe assembly, with three Hall sensors for measuring both the horizontal and vertical field components, has been calibrated. The techniques for doing the calibration and the measurement results at various temperatures will be presented.
 
 
TUP220 Cryogenic Sub-System for the 56 MHz SRF Storage Cavity for RHIC cavity, superconducting-RF, collider, booster 1226
 
  • Y. Huang, D.L. Lederle, L. Masi, P. Orfin, T.N. Tallerico, P. Talty, R. Than, Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A 56 MHz Superconducting RF Cavity is being constructed for the RHIC collider. This cavity is a quarter wave resonator that will be operated at 4.4K. The cavity requires an extreme quiet environment to maintain its operating frequency. The cavity besides being engineered for a mechanically quiet system, also requires a quiet cryogenic system. Liquid helium is taken from RHIC's main helium 3.5 atm, 4.9K supply header to supply this sub-system and the boil-off is return to a separate local compressor system nearby. To acoustically separate the cryogenics' delivery and return lines, a condenser/boiler heat exchanger is used to re-liquefy the helium vapor generated by the cavity. A system description and operating parameters is given about the cryogen delivery sub-system.
 
 
TUP223 Cryogenic System for the Energy Recovery Linac and Vertical Test Facility at BNL cryomodule, cavity, vacuum, controls 1235
 
  • R. Than, D.L. Lederle, L. Masi, P. Orfin, R. Porqueddu, V. Soria, T.N. Tallerico, P. Talty, Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A small cryogenic system and warm helium vacuum pumping system provides cooling to the Energy Recovery Linac's (ERL) cryomodules, a 5-cell cavity and an SRF gun, and a large Vertical Test Dewar. The system consist of a model 1660S PSI (KPS) plant, a 4000 liter storage dewar, subcooler, wet expander, 50 g/s main helium compressor and 170 m3 storage tank. A system description and operating plan is given of the cryogenic plant and cryomodules
 
 
TUP224 Cryogenic Vertical Test Facility for the SRF Cavities at BNL vacuum, SRF, shielding, radiation 1238
 
  • R. Than, I. Ben-Zvi, A. Burrill, M.C. Grau, D.L. Lederle, C.J. Liaw, G.T. McIntyre, D. Pate, R. Porqueddu, T.N. Tallerico, J.E. Tuozzolo
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
A vertical facility has been constructed to test SRF cavities and can be utilized for other use. The liquid helium volume for the large vertical dewar is approximate 84 inches tall by 40 inches diameter with a working clear inner diameter of 38 inch with the inner cold magnetic shield system installed. For radiation enclosure, the test dewar is situated inside a concrete block structure. The structure is above ground and is accessible from the top, and has a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth is also available for testing of smaller cavities in 2 smaller dewars.
 
 
TUP225 Overview of Recent Studies and Modifications Being Made to RHIC to Mitigate the Effects of a Potential Failure to the Helium Distribution System vacuum, controls, factory, feedback 1241
 
  • J.E. Tuozzolo, D. Bruno, A. Di Lieto, G. Heppner, R. Karol, E.T. Lessard, C.J. Liaw, G.T. McIntyre, C. Mi, J. Reich, J. Sandberg, S.K. Seberg, L. Smart, T.N. Tallerico, R. Than, C. Theisen, R.J. Todd, R. Zapasek
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In order to cool the superconducting magnets in RHIC, its helium refrigerator distributes 4.5 K helium throughout the tunnel via a series of distribution and return lines. The worst case for failure would be a release from the magnet distribution line, which operates at 3.5 to 4.5 atmospheres and contains the energized magnet bus. Should the bus insulation system fail or an electrical connection open, there is the potential for releasing up to 70 MJoules of stored energy. Studies were done to determine release rate of the helium and the resultant reduction in O2 concentration in the RHIC tunnel and service buildings. Equipment and components were also reviewed for reliability and the effects of 10 years of operations. Modifications were made to reduce the likelihood of failure and to reduce the amount of helium gas that could be released into tunnels and service buildings while personnel are present. This paper describes the issues reviewed, the steps taken, and remaining work to be done to reduce the hazards.
 
 
TUP243 Development Status of a Magnetic Measurement System for the APS Superconducting Undulator undulator, status, wiggler, photon 1286
 
  • Y. Ivanyushenkov, M. Abliz, C.L. Doose, M. Kasa, E. Trakhtenberg, I. Vasserman
    ANL, Argonne, USA
  • V.K. Lev, N.A. Mezentsev, V.M. Tsukanov
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Short-period superconducting undulators are being developed as part of the Advanced Photon Source (APS) upgrade program. The first test device is in fabrication. Before installation into the storage ring, the magnetic performance of the undulators will be characterized. The magnetic measurement facility routinely used for measuring and tuning conventional undulators cannot be employed for superconducting devices, so a new measurement system is being designed and built. The system is mechanically mounted on the undulator cryostat and uses a heated tube in the cold undulator bore to guide a Hall probe or measuring coils. A specially designed three-Hall sensor assembly allows measurement of the vertical and horizontal components of the magnetic field and the determination of the height of the magnetic midplane. A set of measuring coils is mounted on carbon-fiber tubes that can be translated and rotated in the undulator bore to measure the field integrals and their multipole components. The design of the measurement system and its construction status is described in this paper.
 
 
TUP270 RF and Structural Analysis of the 72.75 MHz QWR for the ATLAS Upgrade cavity, niobium, cryomodule, coupling 1325
 
  • T. Schultheiss, J. Rathke
    AES, Medford, NY, USA
  • J.D. Fuerst, M.P. Kelly, P.N. Ostroumov
    ANL, Argonne, USA
 
  Funding: This work was supported by Argonne National Lab under contract # 0F-32381 & 0F32422
An energy upgrade to the heavy-ion accelerator ATLAS at Argonne Lab is progressing*,**. The plans include replacing split-ring cavities with high performance quarter wave resonators. The new 72.75 MHz resonators are designed for optimum ion velocity β=.077 and a record high accelerating voltage of 2.5 MV by modifying the top geometry and reducing the peak surface fields. This new cavity has a longer center conductor than the 109 MHz cavities previously built by ANL with AES assistance, this and the other geometry changes add new engineering requirements to the design. This paper presents the engineering studies that were performed to resolve new issues. These studies include determining structural frequencies of the center conductor and stiffening methods, resonator frequency sensitivity to helium pressure fluctuations, and determining stress levels due to pressure and slow tuning. Evaluation of fast piezoelectric tuner frequency shift to tuner load was also performed and the local cavity shape was optimized based on these results.
* P.N. Ostroumov, et.al, “A New Atlas Efficiency and Intensity Upgrade Project,” SRF2009, tuppo016
** P.N. Ostroumov, et.al., “Efficiency and Intensity Upgrade of the Atlas Facility,” LINAC 2010, MOP045
 
 
WEOCS4 Integrated EM & Thermal Simulations with Upgraded VORPAL Software HOM, simulation, plasma, niobium 1463
 
  • D.N. Smithe, D. Karipides, P. Stoltz
    Tech-X, Boulder, Colorado, USA
  • G. Cheng, H. Wang
    JLAB, Newport News, Virginia, USA
 
  Funding: This work supported by a DOE Phase II SBIR.
Nuclear physics accelerators are powered by microwaves which must travel in waveguides between room-temperature sources and the cryogenic accelerator structures. The ohmic heat load from the microwaves is affected by the temperature-dependent surface resistance and in turn affects the cryogenic thermal conduction problem. Integrated EM & thermal analysis of this difficult non-linear problem is now possible with the VORPAL finite-difference time-domain simulation tool. We highlight thermal benchmarking work with a complex HOM feed-through geometry, done in collaboration with researchers at the Thomas Jefferson National Accelerator Laboratory, and discuss upcoming design studies with this emerging tool. This work is part of an effort to generalize the VORPAL framework to include generalized PDE capabilities, for wider multi-physics capabilities in the accelerator, vacuum electronics, plasma processing and fusion R&D fields, and we will also discuss user interface and algorithmic upgrades which facilitate this emerging multiphysics capability.
 
slides icon Slides WEOCS4 [0.996 MB]  
 
WEOCS5 Experience of the Cryogenic System for Taiwan Light Source cavity, controls, status, storage-ring 1466
 
  • F. Z. Hsiao, C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
 
  In Taiwan light source a superconductive cavity and five superconductive magnets are installed in the storage ring. The cryogenic system provides liquid helium and liquid nitrogen with stable pressure. Failure events occurred on the components such as expansion turbine, compressor, and frequency inverter during the past years. A supervision system was developed to monitor the status of the cryogenic system and an automatic call out system was built to notify the operators when abnormal condition appears. To shorten the interruption period of liquid helium supply, the dewar keeps stable and continuous supply of liquid helium and the recovery compressor collets the evaporated helium gas from the cryostat for cases of several hours shutdown of the cryogenic system. Humidity, cleanliness and helium leak tightness are items necessary to be well controlled before connecting new components or application devices to the cryogenic system. The matching between system cooling capacity and heat load is achieved via adjustment of turbine speed, precooling temperature, compressor speed, and heater power.  
 
THP060 RHIC 12x150A Current Lead Temperature Controller: Design and Implementation controls, monitoring, power-supply, target 2238
 
  • C. Mi, D. Bruno, N.M. Day, A. Di Lieto, G. Ganetis, K. Hamdi, G. Heppner, J.P. Jamilkowski, W. Louie, J. Sandberg, S.K. Seberg, C. Sirio, J.E. Tuozzolo, K.L. Unger
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
There are 60 12×150A current leads distributed in 6 RHIC service buildings; each current lead delivers power supply current from room temperature to cryogenic temperature in RHIC. Due to the humid environment, condensation frequently occurs and ice was quickly formed during operation, especially during an extensive storage period. This condition generated warnings and alarms that personal had to respond to, in order to provide temporary solutions, to keep the machine operational. A temperature control system was designed to avoid such occasions. We will discuss design, implementation and some results of this design in this paper.
 
 
THP211 Design Features and Construction Progress of 500-Mhz Rf Systems for the Taiwan Photon Source SRF, storage-ring, booster, LLRF 2513
 
  • Ch. Wang, L.-H. Chang, M.H. Chang, C.-T. Chen, L.J. Chen, F.-T. Chung, F. Z. Hsiao, M.-C. Lin, Y.-H. Lin, C.H. Lo, G.-H. Luo, M.H. Tsai, T.-T. Yang, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
  • M.C. Lee
    SSRF, Shanghai, People's Republic of China
 
  The accelerator complex of the Taiwan Photon Source (TPS) consists of two 500-MHz RF systems: one RF system with KEKB-type single-cell SRF modules is used for the 3-GeV storage ring of circumference 518 m, and the other with five-cell Petra cavities at room temperature is for the concentric full-energy booster synchrotron. This overview of the construction of the 500-MHz RF systems for the TPS is presented with emphasis on our strategy to approach the expectation of highly reliable SRF operation of the TPS. How to complete the construction project on time, on budget and on performance is our unique concern.  
 
THP218 Design Concept for a Modular In-vacuum Hall Probe Mapper for use with CPMU Convertible In-vacuum Undulators of Varying Magnetic Length vacuum, undulator, insertion, insertion-device 2534
 
  • J. Rank, D.A. Harder, G. Rakowsky, T. Tanabe
    BNL, Upton, Long Island, New York, USA
 
  Funding: NSLS-II, Brookhaven National Laboratory, working under the U.S. DOE, Contract No.DE-AC02-98CH10886.
Both In-Vacuum Undulators (IVU) and Cryogenic Permanent Magnet Undulators (CPMU), each important to third generation light sources, are best characterized in their operating environment. To create a precise Hall probe map of an IVU/CPMU (IVU hereafter), an In-Vacuum Magnetic Measurement (IVMM) System is proposed. Point-by-point measurement of field and trajectory error at operating conditions informs corrective tuning. A novel design concept for a universal IVMM System has been developed and explored. The IVMM seals to the rectangular UHV-flange of the IVU and shares its common vacuum space. Moreover, a modular design permits a range of IVU of varying magnetic length to be mapped with a single IVMM System, and is thus cost effective when multiple IVU of different configuration are planned. Here we review aspects of the modular IVMM design concept.