Electron Cloud Experiments at Fermilab: Formation and Mitigation

Bob Zwaska Fermilab for M. Backfish, D. Capista, N. Eddy, I. Kourbanis, C. Y. Tan, C. Thangaraj, X. Zhang

> March 28, 2011 Particle Accelerator Conference

Introduction

- New accelerators / brighter beams
 > LHC/ILC/PrX
- Collective effects scale strongly
 - Space Charge, Impedance
 - Electron Cloud
- ECloud is a somewhat recent instability
 - Doesn't form at all for low-intensities
 - No obvious signature in conventional beam instrumentation
 - Generally, with any intense positive beam, a cloud of electrons can form within the vacuum vessel – degrading the performance of the machine

Bob Zwaska - Fermilal Particle Accelerator Confe

Main Injector

1.4 sec cycle

Single turn transfer at 8 GeV

190 kW

120 GeV fast extraction

1.6 x 1014 protons/1.4 sec

2.1 MW

March 28. 2011

Driving Protons at the Main Injector

- Main Injector today produces 120 GeV proton beams for neutrinos and antiprotons
 - ➢ 400 kW average power synchrotron
 - ➤ 4-5E13 protons per pulse
 - 10e10 Protons per bunch
- Near future upgrades (NOvA)
 - ➢ 700 kW, 4-5E13 protons per pulse
- Upgrades in planning –Project X
 - > 2+ MW at 60-120 GeV in Main Injector
 - ➤ 15+ E13 protons per pulse
 - 30e10 Protons per bunch
- Electron cloud on the top of our minds as a problem for tripling the beam intensity

March 28. 2011

Bob Zwaska - Fermilab Particle Accelerator Conference

Electron Cloud Model at Fermilab

- Considering the Main Injector beam
 - \succ 1-8 ns long bunches every 19 ns
 - ➤ 1-5 mm transverse sigma
 - > Bunch intensities of $\sim 10^{11}$ protons
- Produce a few initial/primary electrons
 - Residual gas ionization
 - *O*(e⁻ / m / torr / proton)
 - > Lost protons
 - Can produce 100's in beam pipe
 - Generally a small constribution
- Beam produces strong potential
 - Nonadiabatic appearance
 - Accelerates electrons
- Beam disappears
 - Electrons collide with wall
 - Produce more electrons through secondary emission

Bob Zwaska - Fermilab Particle Accelerator Conference

Secondary Emission

- Electrons produced upon collision with wall
 - Conversion of energy to multiplicity
- On average, 2 electrons produced per incident 400 eV electron on unconditioned MI pipe
 - Over time, this number decreases
- Secondary electron yield (SEY) depends on the energy of the incident electron
- Different materials and geometries can have different SEYs
- Produced electrons have much lower energies, typically 1-10 eV

March 28. 2011

Simulation of Entire Process

- Simulations suggested that MI might be near a threshold for electron cloud formation
 - ➢ 4-5 orders or magnitude increase of cloud density with a doubling of bunch intensity
 - Used existing code: POSINST
 - Had been applied to several other electron cloud situations
- We operate now just on the lower side of the threshold
 - ➢ We could move above it through these upgrades and be hit without warning

March 28. 2011

Bob Zwaska - Fermilab Particle Accelerator Conference

(simple) Critical Model for ECloud

- Why such a threshold for the Main Injector?
- Consider equilibrium at marginal intensities
 - Criticality parameter: κ
 - Proportion of electrons that "survive" a bunch crossing

$$N_{b+1} = \kappa \times N_b + P$$

- > No straightforward equation for κ
 - Combination of energy gain, SEY curve, and slow loss between bunches
 - Comes from simulation

$$N_{eq} = \frac{P}{1 - \kappa}$$

- > Below threshold, ($\kappa < 1$) equilibrium density is reached
- At $\kappa > 1$ there is exponential growth, and it is limited only by the space charge of the electrons screening the proton beam potential
 - Requires at least a few %, quickly approaches line density of the same order as the beam

$$N_{eq} = f * N_{beam} \qquad \{0.1 < f < 1\}$$

- \succ *f* comes from simulation. Typically around 70%
- Primary production is the key difference
 - > In electron/positron machines, can be ~ 1% / bunch
 - Electron density is large even if $\kappa < 1$, so transition is weak
 - > In MI it is order 1e-8 / bunch, so the transition at κ =1 is very strong

March 28. 2011

Bob Zwaska - Fermilab Particle Accelerator Conference

Project X Approach

- Program of experiments and simulation addressing the questions for Project X
 - > Tripling the MI Intensity
- Measurements with the existing beam have shown evidence for the beginning of a threshold
- Our default approach is to plan to coat all the MI magnets
 - Coatings can reduce the secondary electron yield
- However, coating is expensive and time-consuming
- Lingering question is whether we can get away without coating
 - ➢ Or coating a single ring, or only part
- Towards Project X:
 - > Develop new instrumentation, particularly for the dipoles
 - Measure SEY conditioning in MI and at Cornell
 - Program of simulation to be able to extrapolate the conditions of conditioning at higher intensity
 - Bench experiments with coatings and conditioning

First Evidence: Pressure Rises in MI

Early Data - Threshold

- Installed a single electron detector
 - Argonne RFA in straight section
- Large number of cycles sampled at maximum electron current
- Clear turn-on at higher intensities
 - ➤ Threshold at ~ 26e12 protons
 - Threshold later moved higher
- Allowed fitting of simulation to data, giving an SEY
 - ➢ Fit to simulation by Furman
 - > Conditioned pipe gave SEY ~ 1.3

March 28. 2011

Bob Zwaska - Fermilab Particle Accelerator Conference

11

2007-2008 Run Summary

- Threshold started low and moved up to $\sim 30e12$ with beam studies
- When 11 batch (high-intensity) became operational, threshold increased quickly
 - Generally threshold moves with the beam intensity
- At the end of the run, the threshold was beyond maximum MI intensity

Instabilities in the MI

- High-intensity beam in the Main Injector is subject to a resistive-wall instability
 - Any search for electron cloud instability must be disentangled from this
- Damper system needed to prevent catastrophic beam loss, even at marginal intensities
 - Digital, bunch-by-bunch system
- Studied instability threshold variation with intensity
 - Generally, the scaling is linear in damper gain, which is what is expected for RWI
 - ECloud would be a nonlinear rise at high-intensity

March 28. 2011

Mitigation Options for MI

- Main Injector is 60% dipole, 25% quadrupole
 - > < 5% bare straights, so solenoids are ineffective
- Beam pipe is captured in magnets and aperture is tight
 - Electrodes are not an option
- Coating is most straightforward solution for Project X
 - > Though certainly not easy or inexpensive
 - Would try to do this in the tunnel, but would require at least moving the magnets and breaking vacuum in many places

March 28. 2011

Electron Cloud Experimental Station - 2009

Major upgrade installed summer 2009

- 2 New experimental Chambers
 - Identical 1 m SS sections, except that one is coated with TiN
- 4 RFAs (3 Fermilab & 1 Argonne)
- 3 microwave antennas and 2 absorbers
 - Measure ECloud density by phase delay of microwaves

- Primary Goal: validate coatings as potential solutions for Project X
- Secondary Goals:
 - Remeasure threshold and conditioning
 - Further investigate energy-dependence
 - Measure energy spectrum of electrons
 - Test new instrumentation
 - Directly compare RFA and Microwave
 - Measure spatial extinction of ECloud

TiN Coating

- TiN is a standard coating for ECloud mitigation
- Coating of test chambers performed at BNL
- Will need to adapt this procedure for *in situ* coating of 3000 m of Main Injector
- Also looking at adopting the SLAC procedure

a - Fermilab ator Conference

Mar

Electron Detectors

- Retarding field analyzers
 - Based on Argonne design
- Maximize signal with enlarged area and by removing ground grid
 - ➢ Ground is provided by the beam pipe
- Shaping of electrodes optimizes energy filter performance
 - Also, more hermetic
- Amplifier/filter in tunnel
 - Better-quality cables to surface

Threshold

Measurement

- Data collected on every Main Injector cycle
- Electron cloud time structure shows a peak flux near the minimum bunch length
- TiN showed immediately superior results to stainless steel
- Record the maximum current for every cycle
- Plot vs beam intensity
 - Very strong threshold behavior
- Fit to extract a threshold factor
 - Only use data from a short period of time

20

Beam Intensity (e12)

Bob Zwaska - Fermilab Particle Accelerator Conference

10

March 28. 2011

18

40

30

Evolution of Thresholds

- Thresholds increase over time
 - Best measure is the total absorbed electron dose
 - Integration under the data curve from the RFAs
- Increase of threshold is evidence of conditioning
 - Surface chemistry is changing to our advantage
 - Limited by the available intensity in the Main Injector
 - ECloud eventually disappeared for TiN
 - Continued at a low level for stainless

March 28. 2011

Particle Accelerator Conference

Conditioning in MI

- Why does the material condition well in MI?
 - Especially, in comparison to other proton rings like PSR or SNS
- The major differences are the beam RF structure and the acceleration cycle
 - > MI h=588 vs h=1 for SNS & PSR
 - > MI has high-intensity beam for ~ 50,000 revolutions each second
 - SNS & PSR have only a few hundred or thousand turns
- In total, the same maximum cloud densities in the machines will produce about 50,000 times more electron flux at the beam pipe of the Main Injector than the others
 - > The dose is too low at other machines to condition in a similar way

Carbon Pipe

- CERN is very interested in amorphous carbon
 - See it as superior to TiN in perhaps not requiring as much conditioning
- They built a chamber for us in short order and we installed it in the MI in 2010
 - Replacing our TiN test chamber
 - Conditioning history made like with TiN

- Initial results were similar to TiN (required conditioning)
- Tests were interrupted by a vacuum leak
 - > Small leak at the edge of carbon pipe
 - > Seems to have poisoned a portion of the surface
 - Detector close to leak saw behavior that was worse than SS until very late in conditioning
 - Detector further away showed behavior more similar to TiN

Bob Zwaska - Fermilab Particle Accelerator Conference

Microwave Measurements

- ECloud induced phase shift
 - Carrier is injected with BPMs at just above the cutoff for the elliptical beam pipe
 - Beam modulates the ECloud
 - ECloud cause PM of carrier
 - PM accumulates over the distance
- Sideband, zero-span, and direct phase measurements
 - Sidebands come from modulation, give intensity (convolved with harmonic information)
 - Zero-span gives a cycle-wide measurement of intensity
 - Very good time-resolution with direct phase
 - Issue is getting enough transmission
- May allow measurement in dipole sections
 - No room for RFAs in Main Injector Dipoles

Problems with Microwave Measurements to Date

- The microwave technique is initially attractive, but suffers two significant flaws:
 - 1. Non-Locality: the measurement will most often not be representative of the targeted area, but a much larger expanse of beam pipe
 - 2. Normalization: a direct extraction of the electron density has been elusive
- Chief problem is reflection
 - Propagating a wave slightly above cutoff is asking for reflections
 - Numerous reflections inside and outside of the target region create many, longer paths from the transmitter to the receiver
- Observed this with the placement of ferrite absorbers around the measurement region
 - > Transmission of carrier dropped x20, and ECloud modulation was not extractable
- Plan a new installation:
 - Create a cavity with obstructions in the beam pipe, only slightly narrowing the aperture
 - Prevents carrier from escaping the measurement region, providing locality
 - Allows use of a carrier further above the beampipe cutoff
 - > Use reflections within the cavity to enhance the signal in a controlled way
 - Allow normalization
 - Design of new station is in progress

Direct SEY Measurement

- SEY measurement station from Cornell
 - Adapted from SLAC
 - > Allows in situ measurement of SEY on samples
- Place sample "buttons" of materials as portion of beampipe circumference
 - Beampipe made of standard materials for us: Stainless 316L
- Directly measure the SEY of the sample
 - SLAC did this by removing the button and testing in a surface physics lab
 - At Cornell, it has been modified for *in situ* measurement
- Will allow comparison between conditioning in electron/positron ring and our proton ring
- Other considerations:
 - Change pieces without breaking accelerator vacuum
 - Monitor electron flux for scrubbing history
 - Differential scrubbing can be factored out
- Stations have been built and we are preparing for installation

March 28. 2011

Bob Zwaska - Fermilab Particle Accelerator Conference

Particle Accelerator Conference

Summary

- Electron cloud build up has been observed at the Fermilab Main Injector
 - ➢ However, this cloud density has not negatively affected the beam
 - > Threshold behavior is qualitatively in agreement with simulation predictions
- Program is wide-ranging, but primary goal is to plan for Project X
- Experiments have shown that MI pipe and coatings condition with beam exposure
 - Coatings condition more quickly and effectively than bare beam pipe
 - Both TiN and amorphous carbon appear similar, though carbon may be more susceptible to contamination
 - Ultimate conditioning has been limited by beam intensity
 - Coating is a viable option for the Main Injector
 - Lingering questions are whether it is necessary, and what procedure is best
- Further experiments needed for Project X
 - Direct SEY measurement
 - Consistent understanding with simulation
 - Measurements with dipole magnets, where possible

Electron Cloud Experiments at Fermilab: Formation and Mitigation

Bob Zwaska Fermilab

March 28, 2011 Particle Accelerator Conference

Simulation

- Have had extensive input from several codes, two make most of the impact:
 - VORPAL (Tech-X & P. Lebrun f/ Fermilab)
 - > POSINST (M. Furman, LBL)
- Some future needs:
 - Simultaneous (or nearly so) simulation of cloud build-up and instabilities
 - Guidance for SEY experiments
 - Electron flux and spectrum
 - Updates of expectations with conditioning
 - Understanding of instrumentation
- Codes have focused on simulating the ECloud buildup
 - > Our approach has been to prevent crossing the transition to high density
 - An extension for simulation would be to approach the question of directly simulating the beam instability with the electron cloud
 - Computationally challenging, but may give us leeway with our mitigations