Upgrade of Accelerator Complex at Pohang Light Source Facility (PLS-II)

Kyung-Ryul Kim PAL/POSTECH

On behalf of PAL Staffs Joined in the

PAC11, March 26-April 1, 2011, New York, USA

Contents

Status of PLS-II Accelerator System

- Upgrade of PLS-II Linac Full Energy Injector
- Upgrade of PLS-II Beam Injection
- Upgrade of PLS-II Storage Ring Systems
 - Magnet Lattice and Beam Dynamics
 - Beam Diagnostics and Control
 - SR Sources: Magnet and ID Systems
 - Magnet Power Supply System
 - Vacuum System
 - RF System
 - Sector Girder and Alignment System
- Upgrade of PLS-II Utility/Infrastructures
- PLS-II SR and Infrastructure Dismantling, Installation and Commissioning
- On-going Activities and Outlook

PLS Operation Issues and User's Demands

- Nation's Reliable and Mature Multi-user Large-Scale Light Source Facility
- Elaborate Cutting-Edge Scientific Needs from User Community

More Fine Beam Orbit Stability and Reliability

- Need more correlated analysis between e-beam performance and photon beam stability
- Need well-established orbit control scheme to be adaptable into the proper PLS operation environment
- > Fine beam control requirements, especially ID users

High Flux and Brilliance Beam

> Meet advanced user's research demands

More ID beamlines at lower operation and construction costs through PLS upgrade (PLS-II)

Overview of PLS-II Project

- PLS-II Project Schedule : FY 2009 FY 2011 (3 years)
- Project Organization : PAL PLS-II Project Team (including domestic and abroad expertise joined) with a support of KOSUA
- Project Cost Breakdown (only machine upgrade)

(US M\$)

Systems	F	Total		
	2009	2010	2011	Budget
Storage Ring	15.1	25.11	9.42	49.63
Linac	8.57	5.97	1.6	16.14
Beamline	5.46	11.82	6.62	23.9
Utility and Infrastructures	0.87	3.5	5.96	10.33
Total Budget	30.0	46.4	23.6	100.0

Key Milestones of PLS-II Project

Foundation of PLS-II Accelerator System Upgrade

Concepts of PLS Upgrade Plan for the PLS-II

Established PLS-II design work with a great help from Prof. Helmut Wiedemann in October 2008.

- Justification of the PLS Upgrade (lower beam emittance, higher photon energies as well as more straight sections for insertion devices in the PLS-II)
- Outlined the scope of upgrade (storage ring lattice, hardware systems, beam monitoring/diagnostics, top-up operation and linac energy upgrade in the PLS-II)
- ID and photon source calculation (photon beam performance in the short and long straight sections)

Classification of PLS-II System Upgrade Structures

Scope of PLS-II Upgrade

- ✓ Magnetic Lattice : low emittance of 5-7 nm at 3 GeV with a number of 20 ID sections (TBA→DBA)
- ✓ Bending Magnets : small pole gap of 34 mm compared to 56 mm in PLS
- Quadrupoles and Sextupoles : new more sextupoles for much stronger focusing
- ✓ Vacuum Chamber : newly designed and constructed
- ✓ Beam Position Monitors : more stable support from the girder
- Magnet Power Supplies : depending on the number of magnets and adjustment of beam dynamics
- ✓ RF System : sustain the 400 mA at 3 GeV, HOM-damped style (NC, SC) cavity be implemented
- Linac Upgrade for Top-up : upgrade to 3 GeV and sustain stable beam condition
- Photon Beamline-Relocation and Heat Load Issue : newly designed for high heat load components such as photon mask, shutter
- R&D on Key Components : In-vac Undulator and DCM, Microwave
 Components, Others

PLS-II Linear Accelerator of 3.0 GeV

PAL

Parameters	PLS	PLS-II
Energy	2.5 GeV	3.0 GeV
Repetition Rate	10 Hz	10 - 30 Hz
Energy Stability	0.5% rms	0.1% rms
Energy Spread	0.6% rms	< 0.2% rms
Emittance (normalized, rms)	150 mm mrad	< 20 mm mrad
Gun Pulse Length	1.5 ns FWHM	< 1 ns FWHM or 0.5 us
Klystron Power (Operating Levels)	50 – 60 MW	70 – 80 MW
SLED Gain	1.5 – 1.6	1.6 – 1.7
Diagnostics	BCMs, BASs, BPRMs	+ BPMs, Slits, Wire Scanners

Preinjector Layout and Bunch Train

Preinjector Layout and Bunch Train

 Parameter of bunching system has been optimally adjusted into Bunch Length of 12 psec.

Linac Layout and Energy Upgrade to 3.0 GeV

Number of klystrons	16
Klystron power (MW)	80
SLED Gain	1.5
No. of accelerating columns	46
Total length (m)	160

	MK1(1set)	MK2 – MK08(7set)	MK09-MK14(6set)	MK15-MK16(2set)	
RF Power	60 MW	70MW 70 MW		70 MW	
Klystron	SLAC5045				
A/C		IHEP			
SLED Gain	w/o	1.	1.5		
Gradient	18.3 MeV/m	20.9 MeV/m 29.6 MeV/m		29.6 MeV/m	
Energy	105.8 MeV	251.0 MeV 177.5 MeV		177.5 MeV	
Number of A/C	2	28	12	4	

29.6 MV/m, 177.5 MeV 29.6 MV/m, 177.5 MeV

	MK1(14(6set)	MK15-MK16(2set)
RF Power	60 🗗			1W	70 MW
Klystron	SLAC			3712	
A/C				Ň	Mitsubishi
SLED Gain	w/		11		1.5
Gradient	18.3 M			eV/m	29.6 MeV/m
Energy	105.8	P		MeV	177.5 MeV
Number of A/C	2	~		2	4

RF Synchronization of SR and Linac

Linac Beam Energy Stabilization

Fluctuation: ±0.5 mm Resolution: 10 MeV/mm

PLS-II Linac requirement: 0.2% energy spread: 3 GeV x ±0.2% = ± 6 MeV => ± 0.6 mm @ BPM

Layout of Injection Straight Section

Electron Beam	Lattice
Energy 3 GeV	Circumference 281.82 m
Current 400 mA	Tune (h/v) 15.24 / 9.17
Emittance 5.8 nm	Natural chromaticity (h/v) -32. 88 / -1 5.49
Emittance coupling < 1%	Momentum compaction factor 0.0013
Energy spread 0.1%	Magnet
Straight Section	Bending 24 units, length 1.8m
Long length, # 6.86 m × 9	Rectangular Bending radius 6.875m
$\beta_x / \beta_y / \eta_x$ 6.46 m / 4.32 m / 0.25 m	field gradient -0.4 T/m
effective 9.5 nm emittance	Quadrupole 96 units, length 0.24~0.53m
Short length, # 3.10 m × 11	field gradient ~22 T/m
$\beta_x / \beta_y / \eta_x$ 2.95 m / 2.86 m / 0.14 m	Sextupole 144 units, length 0.1~0.2m
effective 8.5 nm emittance	2nd field derivative ~600 T/m² 27/5

Dynamic Aperture and Lattice Performance

The vertical BSC is limited by the vertical aperture of 13 mm in the bending magnet vacuum chamber. The horizontal limit of BSC is given by the standard chamber with an aperture of 36 mm in quadrupoles.

Alignment error (rms)

Bending magnet : 150 µm

Quadrupole / Sextupole : 100 µm

Multipole contents

Dinala	Systematic errors	Bandom errors
3 (b3/b1)	<u>-1.88e-4</u>	2.0e-4
4	2.55e-4	2.0e-4
Quadrupoles	Systematic errors	Random errors
3	. 0	0.00013
4	: 0	: 7.20e-5
5	0	1.26e-5
6	4.57e-4	2.34e-5
7	0	2.34e-5
8	0	2.34e-5
9	0	2.34e-5
10	2.50e-5	2.34e-5
14	2.52e-4	2.34e-5
Sextupole	Systematic errors	Random errors
4	0	0.00075
5	: 0	0.00075
6	: 0	0.00075
7	: 0	0.00075
8	: 0	0.00075
9	0.003	0.00075
10	: 0	0.00075

PLSII lattice frequency map, no = 25cm, vo = 15.28 PLSII lattice frequency map, η_v = 25cm, ν_v = 15.28 9.44

Roll for all magnets : 200 µrad

Main magnet field error: 2.10-4

Corrected chromaticity: ~ 5

ID tracking

ELEGANT

(Ying Wu's canonical integration code)

$$B_y = -|B_0| \sum_{m,n} C_{mn} \cos(k_{xl}x) \cosh(k_{ym}y) \cos(k_{zn}z + \theta_{zn})$$
$$k_{ymn}^2 = k_{xm}^2 + k_{zn}^2; k_{zn} = 2\pi n / \lambda_w$$

Beam Diagnostics and Control

Beam Diagnostics System

Design Requirements of Beam Diagnostics

- Satisfy the requirements of commissioning, machine study, routine operation and the performance upgrade
- Provide beam intensity, orbit information, transverse and longitudinal profiles, energy and many beam parameters
- Distribute the diagnostics tools around the accelerator, incorporating signal-processing electronics in analogue or digital way for data acquisition and further analysis

Electron Beam Parameters	Instruments	Description	Quantity
Beam position meas. (first-turn, turn-by-turn, closed orbit feedback)	Digital BPM	 Machine tuning and beam studies Closed orbit meas. Orbit control and feedback 	12×8=96
Average beam current	DC Current Transformer	-Built-in magnetic field shielding, low temperature coefficient, 1μA resolution	2
Betatron tune and beam damping	Stripline Electrode	 Beam spectrum and observation of instability Used as transverse kickers for a transverse bunch-by-bunch feedback 	2
Beam profile for commissioning	Screen Monitor	- Destructive position measusment	1
Beam trimming, dynamic aperture	Scraper	- To define the physical dynamic aperture	1

Beam Diagnostics and Control (cont.)

Amplitude [A.U.]

0.000

Ω

5

10

15

Frequency [GHz]

20

25

30

Position offset: X_0 =-0.1107 mm, Y_0 =0.1599 mm 33/51

Beam Diagnostics and Control (cont.)

Orbit Control and Monitoring System

Orbit Stability Requirements

0	Beam Si	ze (μm)	Orbit Stability (µm)	
Source	Horizontal	Vertical	Horizontal	Vertical
Bending Magnet	53	30	5.3	3
IDs at Long Straight Section	241	17	24.1	1.7
IDs at Short Straight Section	160	11	16	1.1

34/51

Beam Diagnostics and Control (cont.)

- Feedback Type
 - Hybrid Type (Fast + Slow Orbit Feedback)
 - Download + Interaction (Soleil Type)
- BPM, Corrector Number
 - Number of BPM: 96 (8 per cell)
 - Corrector: 48 (4 per cell, insertion device area)
- Feedback Bandwidth
 - BPM Sampling Rate > 4 kHz
 - Corrector Magnet Risetime < 1 ms</p>
 - Feedback bandwidth > 100 Hz
- Corrector Strength
 - Corrector Magnet Strength : $\pm 20 \ \mu rad$

SR Sources: Magnet and ID Systems

SR Sources: Magnet and ID Systems

Central Field Distribution of Gradient BM

SR Sources: Magnet and ID Systems (cont.)

Magnet Systems for PLS-II

Туре	Number	Key Parameters	Remarks
Gradient	2×12	1.4555 T, 4.0028 T/m Gap=34 mm, L _{eff} =1.800 m	All powered in series
Quadrupoles	8×12	4 types, Max Gradient 22T/m, R _c =36 mm	Powered in family series with independent aux coils.
Sextupoles	8 ×12	Max B"=550 T/m ² R _c =39 mm, 2 types	SkewQ, V-corrector, H-corrector, combined function
Kicker Magnet	4		Recycle existing one
Lambertson Septum	1	3.0 GeV, 8.8 degree vertical bending,	

Energy, <i>E</i>	3.0	GeV
Bending radius, <i>r</i>	6.87549	m
Full aperture in bending magnet, G	34	mm
Aperture radius in quadrupole, R _Q	36	mm
Aperture radius in sextupole, R _s	39	mm

SR Sources: Magnet and ID Systems (cont.)

ID Installation Plan of PLS-II

Vacuum pipe cross-section: 22 x 66 (mm)

PAL

Name	#	Pole-gap (mm)	Length (m)	Radius <u>1</u> (mm)	Total length ² (m)
EPU	1	18	4	7	6
EPU	1	18	3.6	7	5.6
NanoScopy	1	18	3.6	7	5.6
U10	1	16	1.6	6	3.6
U6	1	18	2	7	4
MPW10	1	12	2	4	4
MPW10	1	12	1.1	4	3.1
MPW14	1	14	1.2	5	3.2
IVU	2	5	1.8	3 <u>3</u>	1.8 x 2
IVU	9	5	1.35	3 <u>3</u>	1.35 x 9
Rev.	1	4	1.02	3 <u>3</u>	3.2

- 1. If out-vac, (pole-gap 4mm) /2
- 2. If out-vac, +2m
- 3. Nominal operation @ 6mm full gap

SR Sources: Magnet and ID Systems (cont.)

ID Installation Plan of PLS-II

- 1. If out-vac, (pole-gap 4mm) /2
- 2. If out-vac, +2m
- 3. Nominal operation @ 6mm full gap

Design Parameters of Magnet Power Supply

		Main-quadrupole Sextupole			Sont						
	BD	MQ1	MQ2	MQ3	MQ4	S1	S2	S3	S4	Sept.	
INPUT(3Φ, Υ/Δ, V)	470	400	400	460	400	440	440	440	440	30	
OUTPUT(A)	1000	1000	1000	1000	1000	500	500	500	500	250	
Power conversion	2	4-paralleled buck converter 2-paralleled buck converter					single buck				
Stability Short: <1 hour	- 	+/- 5 pp +/- 10 pp								·	
Stability long: >8 hour	- ••• -										
Controller	-	Full digital controller									
Resolution		20 bit									
cooling		water									
protection		OC, OT, OV, cooling water, Ext. 41									

Design Parameters of Magnet Power Supply

	Aux. Quad.	Skew	Slow corrector	Fast corrector	Trim coil (Gradient magnet)	ID corrector (ID no: 20)		
No.	96	24	V: 96, H: 96	V: 48, H: 48	24	V: 40, H: 40		
INPUT(3Φ, Δ, V)	23	15	23	15	15	15		
OUTPUT(A)	20	20	20	15	15	10		
Power conversion	H-bridge type							
Stability Short: <1 hour	+/- 5 ppm							
Stability long: >8 hour	+/- 10 ppm							
regulation		Line: +/-10 ppm for +/-10%, Load: +/-10 ppm for +/-10%						
Controller		Full digital controller						
Resolution		20 bit						
cooling	Water							
PALprotection	OC, OT, OV, cooling water, Ext. 42/							

Arrangement of Magnet Power Supply in Typical Cell

Installation Layout of Magnet Power Supply

More detailed status is given by S. -Ch. Kim.

Sector Girder and Alignment System

Mechanical Girder System

- System Design Criteria
 - ➢ Hold magnet center of 1,400 mm from the SR tunnel floor
 - Rigid enough to sustain higher natural frequency
 - Absorb the deformation coming from the ground movement
 - Allow the active adjustment in vertical direction
 - Install several diagnostic instruments to measure the deformation and get more flexible alignment (HLS, HPS, LVDT)

BM Girder

- Screw Jack : 3 set
- Stepping Motor : 3 set
- Linear Absolute Encoder : 3 set
- Total weight : 2.0 ton

- Screw Jack : 6 set
- Stepping Motor : 3 set
- Linear Absolute Encoder : 3 set

QM/SM Girder

- Total weight : 3.0 ton

Vacuum System

Configuration of Magnet Vacuum Chambers

Mulipole magnet vacuum chambers Gradient bending magnet vacuum chambers Diff. Pressure : 0.1 MPa Support : Fixed (2point) Material: AI 5083-H321 Diff. Pressure : 0.1 MPa Diff. Pressure : 0.1 MPa Deformation (Max): 0.107 mm Support : Fixed (2point) Support : Fixed (2point) Material: AI 5083-H321 Material : AI 5083-H321 Deformation (Max) : 0.106 mm Deformation (Max): 0.196 mm

Vacuum System

Configuration of Magnet Vacuum Chambers

Vacuum System (cont.)

Vacuum System (cont.)

Vacuum Chamber Fabrication Process

machining

measurement

delivery/inspection

TE mode test

weld

moving

cleaning

assembly/vacuum test

RF System

Design Parameters of Superconducting RF System

Y

Parameters		
RF cavity	SC	
Number of cryomodule	3	
RF voltage per cavity	1200 kV	
RF power per cavity (P _{cavity} = P _{wall} + P _{beam})	232 kW	Y
Wall loss power (P _{wall})	23 W	*
Beam Loading power (P _{beam})	232 kW	
Number of power amplifier	300 kW × 3	
SR tunnel space	1 and half -SS	

RF System

Design Parameters of Superconducting RF System

Parameters	PLS	PLS-II
Energy [GeV]	2.5	3.0
Current [mA]	200	400
Emittance [nm-rad]	18.9	5.8
Circumference [m]	280.56	281.82
Revolution frequency [MHz]	1.068	1.0638
Harmonic number	468	470
No. of Insertion Devices	10	20
Electron energy loss / turn from dipoles [keV]	548.4	1042
and insertion devices [keV]	160	250
Beam loss power by synchrotron radiation [kW]	142	517.0
RF frequency [MHz]	500.082	499.973
Cavity type	NC	SC
No. of RF cavities	5	3 (2)
Accelerating Voltage [MV]	2.0	4.5 (3.3)
RF Voltage per cavity [MV]	0.4	1.5 (1.65)
Klystron amplifier	Five 75 kW amplifiers	Three 300 kW amp.
Cryogenic Cooling Capacity @4.5 K [w]		700

- Baseline design: Three Cryomodules
- Two Cryomodules will be installed in Phase II commissioning periods.

Digital Low Level RF System and Klystron System

- ✓ Cavity Field Control(Amplitude & Phase)
- ✓ Cavity Tuning & Beam Loading Compensation
- \checkmark Beam Instability Suppression
- ✓ RF Reference Generation & Distribution
- ✓ High-power protection

✓ Analog + Digital Technology

✓ RF Signal Generation & Precision Clock Synchronization

✓ RF & Digital Board Development with JLAB Collaboration

✓ PC/104 Based Single Board Computer with EPICS IOC with JLAB Collaboration

✓ High Power Amplification : 2-75kW and 2-300kW Klystron

Design Parameters of PLS-II RF System

Parameters			
RF cavity		SC	
Number of cryomodu	le	2	
RF voltage per cavity		1200 kV	Installation, Cryomodule
RF power per cavity (P _{cavity} = P _{wall} + P _{beam})		232 kW	
Wall loss power (P _{wa}	u)	23 W	
Beam Loading power	(P _{beam})	232 kW	
Number of power am	plifier	300 kW × 3	
SR tunnel space		1 and half -S	S P P P P P P P P P P P P P P P P P P P
# of Amplifier/HVPS	3		
Waveguide	WR1	800	
Circulator	~350	kW	
Amplifier	300k	W klystron	
ANES?	55kV	/10A	54/51

	Item	Unit	Value	Y	
	Resonant frequency	MHz	499.765	7.	
and the second s	RF Voltage per cavity [MV]	MV	1.65 (1.5)		
	Accelerating voltage [MV]	MV	3.3 (4.5)		
	Operating temperature	K	4.5		
	Operating pressure	mbar	1.3		
	Pressure stability of LHe tank	mbar	± 3 @2.0 MV		
	Cryomodule helium level stability	%	± 1		
	LN2 pressure stability	mbar	± 50		

Magnet Girder and Alignment System

Mechanical Girder and Supporting Structures

System Design Criteria

- Hold magnet center of 1,400 mm from the SR tunnel floor
- Rigid enough to sustain higher natural frequency
- Absorb the deformation coming from the ground movement
- Allow the active adjustment in vertical direction
- Install several diagnostic instruments to measure the deformation and get more flexible alignment (HLS, HPS, LVDT)

Magnet Girder and Alignment System

Multipole Magnet Girder

Dipole Magnet Girder

Magnet Girder and Alignment System

[Magnet Error Tolerance with respect to Girder]

• QM, SM : 50 µm
• BM : 150 µm

Storage Ring Total : 100 / (rms)

[Alignment System]

- HLS : Monitoring the Girder Movement
- Stepping Motor : Adjusting the Vertical Position
- Absolute Linear Encoder, Digital Probe : Recording the Position

Upgrade of PLS-II Utility/Infrastructures

Infrastructures for More Stable Beam of PLS-II

Building and Ground Movement

- Monitor ground displacement using the HLS in real time and countermeasure mechanically the movement with a active girder system
- Thermal Deformation
 - Prevent structural thermal deformation using isolating materials and low thermal expansion structures
 - Water temperature control, air-conditioning and dissipation of heat from electric power devices
- Mechanical Vibration
 - Increasing the resonance frequency of the mechanical structures, using damping materials and isolating vibration sources
- Electrical Power and Grounding System

PLS-II SR and Infrastruct Dismantling, Installation a

Basic Strategy of PLS-II Installation and Commissioning

Strategy to Achieve Technical Goals of PLS-II

- Define Key Milestones
- Analyze System Integration
- Establish Dismantling and Installation Plan
- Safety Issue and Radiation Shielding
- High Heat Load Components (Vacuum)
- Communication (Risk Management)
- Experienced Experts (Manpower)
- Planned Commissioning Scenario

Basic Strategy of PLS-II Installation and Commissioning

Concepts of Three Phase Construction Programs

Separation of the construction activities into Three Phases to meet the overall dismantling/installation schedules based on the work duties

Installation Periods		Main Activities*			
Phases	(Not Fixed)	Storage Ring	Linac/BTL		
Phase I	Dec. 15, 2010 - Jan. 15, 2011	Dismantling of PLS SR Components	Re-location of Linac MK09 downstream		
Phase II	Jan. 16, 2011 - Feb. 11, 2011	Preparation of tunnel floor, ground marking, cable tray	Actual installation of systems and components of Linac		
Phase III	Feb. 14, 2011 - June 30, 2011	Actual installation of systems and components of SR	Start-up and commissioning of Linac (May to June, 2011)		
* The beamlines with front-end components should be interfaced with SP installation activities					

Procedures of Dismantling Program

Dismantling Procedures to Meet PLS-II Needs

- 1. Preparation of tug transport system for moving heavy-weight structures, chain blocks and jigs, etc
- 2. Three gates (doors) open to transfer from SR tunnel to outside (#5, 11 cell shielding wall blocked)
- 3. Dismantling the HLS, power/signal cables, cooling pipes/tubes, cable trays, air/gas lines, vacuum vent/valve closing, sector by sector
- 4. Disassemble the re-cycled components in the SR tunnel and move out the components to outside building (reserved for final removal after radiation safety check)
- 5. Anchor removal, ground grouting/painting, ground floor survey/monument and marking, cable tray re-arrangement
- 6. Review and check the dismantling of the SR tunnel for PLS-II needs

Storage Ring Layout of PLS SR Tunnel

PAL >

Demolition Status of PLS Storage Ring/Beamlines

Demolition Status of PLS Storage Ring/Beamlines

Demolition Status of PLS Storage Ring/Beamlines

Procedures of Installation Program

Installation Strategy of SR Components

- Detailed analysis and planning of manpower and resource distribution for intensive system integration on the scheduled time
 - ✓ Identification of equipment and systems hardware readiness
 - ✓ Identification of assembly sequence between the main components and ancillary systems – interface procedure readiness
- Safety process depending on the rules and regulations for no accidents
- > Installation crew training and coordination
- > Review of the readiness to verify the PLS-II start-up

Procedures of Installation Program

Demonstration of Typical Cell of PLS-II for Identifying Installation Activities and Component Interfaces

Procedures of Installation Program

Installation Procedures of both Magnets and Girder Assembly

In the Workshop (Assembly Room)

- Set and lay out the girders to the imaginary orbit center line on the ground.
 Install the magnets and adjust the position locally.
 The magnet-girder assemblies will be transported independently in the tunnel by a tug transporter.

In Storage Ring Tunnel

- Check the ground level and grout the floor.
 Drill and insert the anchor nut into the ground with a precision less than 1 mm.
 Move and pre-install the magnet -girder assembly.
 Install the base plate and screw jack.
 Install the magnet-girder assembly on the screw jacks.
 Remove the upper part of the Quadrupole and Sextupole Magnets.

- Install the vacuum chamber
- Set up the upper part of the Quadrupole and Sextupole Magnets.
- Install the dipole magnet.
 Survey and align the magnet and vacuum chamber cell by cell
 Whole ring survey and adjust the positions of the magnets.

Installation Status of PLS-II Storage Ring/Beamlines

Start-up and Commissioning Plan of PLS-II

Tentative Machine Start-up and Commissioning Plan

On-going Activities and Outlook

- Be done an actual installation program of PLS-II accelerator systems including the dismantlement of current PLS SR and beamline components, including the modification of ancillary infrastructures to meet PLS-II requirements.
- Be defined key milestones depending on the system levels more clearly from construction to start-up or commissioning to achieve the technical goals of a complex projects
- Be confirmed on-time delivery of components with an accepted performance to prevent an interruption of the installation program of PLS-II within 6 months

On-going Activities and Outlook

Readiness of PLS-II Main Accelerator Components

✓	Magnetic Lattice : Completion of Linear/Nonlinear Beam Dynamics
	including error budget analysis and optimization (tune, DA, etc.)
\checkmark	Bending Magnets : IHEP manufacturing (BM)
	prototype finished and under field measurement
	delivered on Jan., 2011
~	Quadrupoles and Sextupoles : For aux coil, IHEP manufacturing (QM) and refurbished with PLS QM, domestic company manufacturing (SM) – on schedule (delivered on Dec. 2010)
~	Vacuum Chamber : Domestic company manufacturing (Sector Chamber) – on schedule (delivered on Dec. 2010)
~	Beam Position Monitors : IT (Libera) manufacturing (2 nd procurement) and pick-up button (domestic) - on schedule (delivered on Jan. 2011)
\checkmark	Magnet Power Supplies : domestic company manufacturing - on schedule (delivered on Dec. 2011)
✓	RF System : Crymodule system (RI-contracted), Cryogenics (AL-contracted), Klystron amplifier (Thales), Waveguide and others – on schedule
✓	Linac Upgrade : Klystron (Toshiba-contrcted), Acc. Section (Mitsubish-contracted, Modulator (domestic) and others – on and advanced schedule
\checkmark	R&D on Key Components : In-vac Undulator (domestic)
✓	Utilities and Safety : Water, Electricity, Radiation Safety (domestic) -on schedule
✓	SR Dismantling and Installation : Under preparation of detailed work duties (domestic) -on schedule
DAI	

On-going Activities and Outlook

Outlook of PLS-II Light Source Facility

The upgrade program (PLS-II) has been officially launched with a project period of three years from 2009 to 2011. The main goals of PLS-II are the increase of straight sections for more insertion devices, the energy increase from 2.5 GeV to 3.0 GeV, a stored beam current from 200 mA to 400 mA. a relatively low emittance of 5.9 nm rad. and more stable beam conditions. During last year (2011) of project periods, the current PLS facility will be shutdown and components be built, and then the first stage commissioning of 100 mA with 3.0 GeV be finalized. New beamlines and experimental stations will be also relocated with newly established insertion devices (undulators and wigglers), while the existing insertion device beamlines may be preserved. The PLS-II is to open for user experiments in 2012 after the international review for assessment of the PLS-II performance and readiness. PAL

Cited from TPS CDR, 2008

75/51

Acknowledgements

PAL IAC Members Gerhard Materlik, DLS, UK (Chair) Kwang-Je Kim, ANL, USA (Co-Chair) Efim Gluskin, ANL, USA Jerry B. Hastings, SLAC, USA Tetsuya Ishikawa, Spring-8, Japan Osamu Shimomura, KEK, Japan Katsunobu Oide, KEK, Japan Keng S. Liang, NSRRC, Taiwan Wolfgang Eberhardt, BESSY, Germany Helmut Wiedemann, SLAC, USA Zhentang Zhao, SSRF, China Winfried Decking, DESY, Germany Robert Hettel, SLAC, USA Hesheng Chen, IHEP, China

The PLS-II Program has been launched with the full financial support from MEST and POSCO, Korea. The author is also thankful for Domestic and International Reviewers who have joined in the PLS-II Technical Review Meetings.

PAL IAC Guest Members Tsumoru Shintake, Spring-8, Japan John N. Galayda, SLAC, USA Jochen R. Schneider, DESY, Germany Hans-Heinrich Braun, PSI, Switzerland Alexander Zholents, LBNL, USA Paul J. Emma, SLAC, USA Zhirong Huang, SLAC, USA Paul Bellomo, SLAC, USA Josef C. Frisch, SLAC, USA

Thank you very much for your kind attention