Keyword: kicker
Paper Title Other Keywords Page
MOP003 Six-Dimensional Bunch Merging for Muon Collider Cooling emittance, wiggler, simulation, collider 109
 
  • R. B. Palmer, R.C. Fernow
    BNL, Upton, Long Island, New York, USA
 
  A muon collider requires single, intense, muon bunches with small emittances in all six dimensions. It is most efficient to initally phase-rotate the muons into many separate bunches, cool these bunches in six dimensions (6D), and, when cool enough, merge them into single bunches (one of each sign). Previous studies only merged in longitudinal phase space (2D). In this paper we describe merging in all six dimensions (6D). The scheme uses rf for longitudinal merging, and kickers and transports with differing lengths (trombones) for transverse merging. Preliminary simulations, including incorporation in 6D cooling, is described.  
 
MOP074 Simulations of a Single-Pass Through a Coherent Electron Cooler for 40 Gev/n Au+79 electron, ion, FEL, bunching 244
 
  • B.T. Schwartz, D.L. Bruhwiler, I.V. Pogorelov
    Tech-X, Boulder, Colorado, USA
  • Y. Hao, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York, USA
  • S. Reiche
    PSI, Villigen, Switzerland
 
  Funding: US DOE Office of Science, Office of Nuclear Physics, grant No.’s DE-FG02-08ER85182 and DE-FC02-07ER41499. NERSC resources were supported by the DOE Office of Science, contract No. DE-AC02-05CH11231.
Increasing the luminosity of ion beams in particle accelerators is critical for the advancement of nuclear and particle physics. Coherent electron cooling promises to cool high-energy hadron beams significantly faster than electron cooling or stochastic cooling. Here we show simulations of a single pass through a coherent electron cooler, which consists of a modulator, a free-electron laser, and a kicker. In the modulator the electron beam copropagates with the ion beam, which perturbs the electron beam density according to the ion positions. The FEL, which both amplifies and imparts wavelength-scale modulation on the electron beam. The strength of modulated electric fields determines how much they accelerate or decelerate the ions when electron beam recombines with the dispersion-shifted hadrons in the kicker region. From these field strengths we estimate the cooling time for a gold ion with a specific longitudinal velocity.
* Vladimir N. Litvinenko, Yaroslav S. Derbenev, Physical Review Letters 102, 114801 (2009)
 
 
MOP197 RHIC Stochastic Cooling Motion Control pick-up, controls, cavity, alignment 462
 
  • D.M. Gassner, S. Bellavia, J.M. Brennan, L. DeSanto, W. Fu, C.J. Liaw, R.H. Olsen
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system [1] for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.
 
 
MOP205 NSLS-II Injection Straight Diagnostics injection, vacuum, septum, diagnostics 477
 
  • I. Pinayev, A. Blednykh, M.J. Ferreira, R.P. Fliller, B.N. Kosciuk, T.V. Shaftan, G.M. Wang
    BNL, Upton, Long Island, New York, USA
 
  The ultra-bright light source being developed by the NSLS-II project will utilize top-up injection and fine tuning of the injection process is mandatory. In the paper we present the diagnostics installed on the injection straight. Its usage for commissioning and tuning of the injection cycle is also described.  
 
MOP247 Quick Setup of Unit Test For Accelerator Controls System controls, heavy-ion, status, collider 574
 
  • W. Fu, T. D'Ottavio, D.M. Gassner, J. Morris, S. Nemesure
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Testing a single hardware unit of an accelerator control system often requires the setup of a graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all testing and control logic. The third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.
 
 
MOP265 The FONT5 Prototype ILC Intra-train Feedback System at ATF2 feedback, linear-collider, simulation, extraction 600
 
  • P. Burrows, R. Apsimon, D.R. Bett, G.B. Christian, B. Constance, C. Perry, J. Resta-López
    JAI, Oxford, United Kingdom
 
  We present the design and beam test results of a prototype beam-based digital feedback system for the Interaction Point of the International Linear Collider. A custom analogue front-end signal processor, FPGA-based digital signal processing boards, and kicker drive amplifier have been designed, built, deployed and tested with beam in the extraction line of the KEK Accelerator Test Facility (ATF2). The system was used to provide orbit correction in y and y' to the train of bunches extracted from the ATF damping ring. We describe the feedback performance in both single and coupled-loop modes and the optimisation of the loop gains.  
 
MOP266 Stripline Kicker Design for NSLS2 Storage Ring impedance, pick-up, damping, feedback 603
 
  • W.X. Cheng, A. Blednykh, S. Krinsky, O. Singh
    BNL, Upton, Long Island, New York, USA
 
  In the NSLS2 storage ring, there are four stripline kickers/pickups. Two long striplines with electrode length of 30cm will be used as bunch-by-bunch transverse feedback actuators. Two short stripline kickers/pickups with 15cm length will mainly used for tune measurement excitation or signal pickup for the beam stability monitor. High shunt impedance of the long stripline kickers is demanded to produce 200μs damping time. Meanwhile the beam impedance should be minimized. The design work for these two types of stripline is discussed in this paper.  
 
MOP269 Design of Longitudinal Feedback Kicker for HLS Storage Ring cavity, storage-ring, impedance, vacuum 612
 
  • W. Xu, D.H. He
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • W. Wu, Y.K. Wu
    FEL/Duke University, Durham, North Carolina, USA
 
  Hefei Light Source (HLS) is a dedicated synchrotron radiation research facility. It is now undergoing a major upgrade. To obtain a better performance of the light source, a longitudinal feedback system will be developed as part of the upgrade project to cure the coupled bunch mode instabilities. In this work, we present a design of the LFB kicker, a waveguide overloaded cavity with two input and two output ports. The cavity design specifications include a central frequency of 969 MHz (4.75 RF frequency), a bandwidth of more than 100 MHz, and a high shunt impedance of 1200 Ω. A study is carried out to find the dependence of the cavity performance on a few critical geometric parameters of the cavity. Since the shape of the vacuum chamber of the HLS storage ring is octagon, a transition from a circular vacuum chamber to an octagon one is built into the end pieces of the cavity to minimize the total cavity length. To lower the required amplifier power, the structure is optimized to obtain a high shunt impedance. The higher order modes of the kicker cavity are also considered during the design.  
 
TUP014 Broad-band Beam Chopper for a CW Proton Linac at Fermilab coupling, rfq, linac, emittance 838
 
  • N. Solyak, E. Gianfelice-Wendt, V.A. Lebedev, S. Nagaitsev, D. Sun
    Fermilab, Batavia, USA
 
  The specifications and the initial conceptual ides for a broad-band proton chopper for a Fermilab Project X linac will be presented. The chopper will form bunch patterns required by physics experiments and will work with downstream beam splitter, allowing for a variable bunch pattern to be delivered to up to three experiment concurrently.  
 
TUP211 Compensation of Fast Kicker Rolls with Skew Quadrupoles injection, quadrupole, photon, coupling 1208
 
  • I. Pinayev
    BNL, Upton, Long Island, New York, USA
 
  The development of the third generation light sources lead to the implementation of the top-up operation, when injection occurs while users collect data. The beam excursions due to the non-closure of the injection bump can spoil the data and need to be suppressed. In the horizontal plane compensation can be achieved by adjusting timing and kick amplitudes. The rolls of the kicker magnets create non-closure in the vertical plane and usually there is no means for correction. In the paper we describe proposed compensation scheme utilizing two skew quadrupoles placed inside the injection bump.  
 
TUP213 Research and Development toward the RHIC Injection Kicker Upgrade injection, high-voltage, factory, impedance 1211
 
  • W. Zhang, W. Fischer, H. Hahn, C. Pai, J. Sandberg, J.E. Tuozzolo
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A research and development work is on going toward the upgrade of the RHIC Injection Fast Kicker System. We report here the proposed nano-second pulse generator, the initial test result, the options of the deflector design, injection pattern, and the benefit to the future RHIC programs.
 
 
TUP254 Real Time Monitoring of the Power Limit Resistor in the Boost Injection Kicker Power Supply power-supply, booster, injection, status 1301
 
  • J.-L. Mi, J. Sandberg, Y. Tan, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
After years of suffering Booster Injection Kicker transistor bank driver regulator trouble shooting, a new real time monitor system has been developed. A simple and floating circuit has been designed and tested. This circuit monitor system can real time monitor the driver regulator power limit resistor status and warn machine operators if the power limit resistor changes values. This paper will introduce the power supply mainly and the new designed monitoring system.
 
 
TUP259 A Solid-State Nanosecond Beam Kicker Modulator Based on the DSRD Switch high-voltage, extraction, status, impedance 1310
 
  • A.L. Benwell, R. Akre, C. Burkhart, A. Krasnykh, T. Tang
    SLAC, Menlo Park, California, USA
  • A. Kardo-Sysoev
    IOFFE, St. Petersburg, Russia
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515
A fast solid-state beam kicker modulator is under development at the SLAC National Accelerator Laboratory. The program goal is to develop a modulator that will deliver 4 ns, ±5 kV pulses to the ATF2 damping ring beam extraction kicker. The kicker is a 50 Ω, bipolar strip line, 60 cm long, fed at the downstream end and terminated at the upstream end. The bunch spacing in the ring is 5.6 ns, bunches are removed from the back end of the train, and there is a gap of 103.6 ns before the next train. The modulator design is based on an opening switch topology that uses Drift Step Recovery Diodes as the opening switches. The design and results of the modulator development are discussed.
 
 
TUP274 Oak Ridge National Laboratory Spallation Neutron Source Electrical Systems Availability and Improvements extraction, injection, pulsed-power, site 1337
 
  • R.I. Cutler, D.E. Anderson, W.E. Barnett, J.D. Hicks, J.J. Mize, J. Moss, K. Norris, V.V. Peplov, K.R. Rust, J. T. Weaver
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
SNS electrical systems have been operational for 4 years. System availability statistics and improvements are presented for ac electrical systems, dc and pulsed power supplies and klystron modulators
 
 
TUP277 RF Design of the Power Coupler for the Spiral2 Single Bunch Selector vacuum, ion, simulation, impedance 1346
 
  • F. Consoli, A.C. Caruso, G. Gallo, D. Rifuggiato, E. Zappalà
    INFN/LNS, Catania, Italy
  • M. Di Giacomo
    GANIL, Caen, France
 
  Funding: Work supported by the European Community FP7 – Capacities – SPIRAL2 Preparatory Phase n° 212692.
The single bunch selector of the Spiral2 driver uses high impedance travelling wave electrodes driven by fast pulse generators. The characteristic impedance of 100 Ω has been chosen to reduce the total power, but this non standard value requires the development of custom feed-through and transitions to connect the pulse generators and the matching load to the electrodes. The paper reviews the design of these devices.
 
 
TUP293 ESTB: A New Beam Test Facility at SLAC hadron, electron, linac, emittance 1373
 
  • M.T.F. Pivi, H. Fieguth, C. Hast, R.H. Iverson, J. Jaros, R.K. Jobe, L. Keller, D.R. Walz, S.P. Weathersby, M. Woods
    SLAC, Menlo Park, California, USA
 
  End Station Test Beam (ESTB) is an end beam line at SLAC using a small fraction of the 13.6 GeV electron beam from the Linac Coherent Light Source (LCLS), restoring test beam capabilities in the large End Station A (ESA) experimental hall. In the past, 18 institutions participated in the ESA program at SLAC. The ESTB program will provide one of a kind test beams essential for developing accelerator instrumentation and accelerator R&D, performing particle and astroparticle physics detector research, linear collider machine and detector interface (MDI) R&D, developing of radiation-hard detectors and material damage studies with several distinctive features. At this stage, 4 new kicker magnets are added to divert 5 Hz of LCLS beam to the A-line, a new beam dump is installed and a new PPS system is built in ESA. In a second stage, a secondary hadron target will be installed, able to produce pions up to about 12 GeV/c at 1 particle/pulse. In summary, ESTB provides a new test facility for LHC detector upgrades, Super B Factory detector development, and Linear Collider accelerator and detector R&D with the first beam expected by June and users starting operations by July 2011.  
 
WEOAN1 Accelerator Timing Systems Overview controls, optics, laser, FEL 1376
 
  • J. Serrano, P. Alvarez, M.M. Lipinski, T. Włostowski
    CERN, Geneva, Switzerland
 
  Timing systems are crucial ingredients for the successful operation of any particle accelerator complex. They are used not only to synchronize different processes but also to time-stamp and ensure overall coherency of acquired data. We describe fundamental time and frequency figures of merit and methods to measure them, and continue with a description of current synchronization solutions for different applications, precisions and geographical coverage, and some examples. Finally, we describe new trends in timing technology and applications.  
slides icon Slides WEOAN1 [1.122 MB]  
 
WEODN1 Overview of System Specifications for Bunch by Bunch Feedback Systems feedback, damping, controls, coupling 1475
 
  • D. Teytelman
    Dimtel, San Jose, USA
 
  Bunch-by-bunch feedback control of coupled-bunch instabilities has become a ubiquitous feature of storage rings, light sources and colliders. Specifying the requirements for these systems demands knowledge of the instability sources and the accelerator operating parameter space. System requirements include the necessary loop gain and bandwidth, kick voltage, and the overall noise floor. Based on these specifications one can select the system BPMs, processing algorithms, power amplifiers and kickers and make tradeoffs of system cost against necessary performance. Through the use of analytical and experimental techniques this talk will illustrate practical and intelligent choices in this specification process. The approach involves experimental characterization of the accelerator at low or moderate beam currents. Measurements are used to calibrate a parameterized analytical beam dynamics model which can be then extrapolated to nominal beam currents with confidence. The speaker will present example results from several recent installations, highlighting the measurements, the model predictions, and the achieved system performance.  
slides icon Slides WEODN1 [1.755 MB]  
 
WEODN2 KEK ATF Beam Instrumentation Program laser, feedback, cavity, emittance 1480
 
  • N. Terunuma
    KEK, Ibaraki, Japan
 
  The Accelerator Test Facility (ATF) in KEK is a research center for studies on issues concerning the injector, damping ring, and beam delivery system for the ILC. It comprises a multibunch-capable RF gun, a 1.3 GeV electron linac, a damping ring, and a test beam line for ILC final focus system (ATF2). Goals of ATF/ATF2 are the achievement of 2 pm vertical emittance, demonstration of a ILC like multi-bunch extraction, achievement of the 37 nm vertical beam size, and stabilization of such beam in a few nano meter level. These targets are supported by R&Ds, such as upgrade of DR BPMs, fast kicker, cavity BPMs, laser-wire, intra-train feedback system (FONT) and a Laser-fringe beam size monitor. To continue providing vital opportunities for accelerator development with the world community, the international collaboration was established.  
slides icon Slides WEODN2 [7.631 MB]  
 
WEP153 Simulation Results of a Feedback Control System to Damp Electron Cloud Single-Bunch Transverse Instabilities in the CERN SPS feedback, simulation, electron, controls 1773
 
  • R. Secondo, J.-L. Vay, M. Venturini
    LBNL, Berkeley, California, USA
  • J.D. Fox, C.H. Rivetta
    SLAC, Menlo Park, California, USA
  • W. Höfle
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the US-DOE under Contract DE-AC02-05CH11231 and the US-LHC Accelerator Research Program (LARP).
Transverse Single-Bunch Instabilities due to Electron Cloud effect are limiting the operation at high current of the SPS at CERN. Recently a high-bandwidth Feedback System has been proposed as a possible solution to stabilize the beam and is currently under study. We analyze the dynamics of the bunch actively damped with a simple model of the Feedback in the macro-particle code WARP, in order to investigate the limitations of the System such as the minimum amount of power required to maintain stability. We discuss the feedback model, report on simulation results and present our plans for further development of the numerical model.
 
 
WEP205 A Gap Clearing Kicker for Main Injector injection, booster, controls, simulation 1870
 
  • I. Kourbanis, P. Adamson, J. Biggs, B.C. Brown, D. Capista, C.C. Jensen, G.E. Krafczyk, D.K. Morris, D.J. Scott, K. Seiya, S.R. Ward, G.H. Wu, M.-J. Yang
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
Fermilab Main Injector has been operating at high Beam Power Levels since 2008 when multi-batch slip stacking became operational. In order to increase the beam power even further we have to address the localized beam loss due to beam left over in the Injection Kicker Gap during slip stacking. A set of Gap Clearing Kickers that kick any beam left in the injection gap to the beam abort have been installed during the summer of 2009 and became operational in October 2010. The kicker performance and its effect on beam losses will be described.
 
 
THP105 Final Design of ILC RTML Extraction Line for Single Stage Bunch Compressor extraction, sextupole, septum, damping 2321
 
  • S. Seletskiy
    BNL, Upton, Long Island, New York, USA
  • N. Solyak
    Fermilab, Batavia, USA
 
  The use of single stage bunch compressor (BC) in the International Linear Collider (ILC) [1] Damping Ring to the Main Linac beamline (RTML) requires new design for the extraction line (EL). The EL located downstream of the BC will be used for both an emergency abort dumping of the beam and the tune-up continuous train-by-train extraction. It must accept both compressed and uncompressed beam with energy spread of 3.54% and 0.15% respectively. In this paper we report the final design that allowed minimizing the length of such extraction line while offsetting the beam dumps from the main line by 5m distance required for acceptable radiation level in the service tunnel. Proposed extraction line can accommodate beams with different energy spreads at the same time providing the beam size suitable for the aluminum ball dump window.  
 
THP108 Analysis of RHIC Beam Dump Pre-fires radiation, high-voltage, survey, secondary-beams 2327
 
  • W. Zhang, L. A. Ahrens, W. Fischer, H. Hahn, J.-L. Mi, J. Sandberg, Y. Tan
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
It has been speculated that the beam may cause instability of the RHIC Beam Abort Kickers. In this study, we explore the available data of past beam operations, the device history of key modulator components, and the radiation patterns to examine the correlations.
 
 
THP131 Injection Straight Pulsed Magnet Error Tolerance Study for Top-off Injection injection, septum, simulation, betatron 2366
 
  • G.M. Wang, R.P. Fliller, R. Heese, S. Kowalski, B. Parker, T.V. Shaftan, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No.DE-AC02-98CH10886
NSLS II is designed to work in top-off injection mode. The goal is to minimize the disturbance of the injection transient on the users. The injection straight includes a septum and four fast kicker magnets. The pulsed magnet errors will excite a betatron oscillation. This paper gives the formulas of each error contribution to the oscillation amplitude at various source points in the ring. These are compared with simulation results. Based on the simple formulas, we can specify the error tolerances on the pulsed magnets and scale it to similar machines.
 
 
THP133 Modulation of Low Energy Beam to Generate Predefined Bunch Trains for the NSLS-II Top-off Injection linac, gun, emittance, storage-ring 2372
 
  • G.M. Wang, W.X. Cheng, R.P. Fliller, R. Heese, J. Rose, T.V. Shaftan
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No.DE-AC02-98CH10886
The NSLS II linac will produce a bunch train, 80-150 bunches long with 2 ns bunch spacing. Having the ability to tailor the bunch train can lead to the smaller bunch to bunch charge variation in the storage ring. A stripline is integrated into the linac baseline to achieve this tailoring. The stripline must have a fast field rise and fall time to tailor each bunch. The beam dynamics is minimally affected by including the extra space for the stripline. This paper discusses the linac beam dynamics with stripline, and the optimal design of the stripline.
 
 
THP134 Lifetime Measurement with Pseudo Moveable Septum in NSLS X-ray Ring injection, septum, closed-orbit, vacuum 2375
 
  • G.M. Wang, J. Choi, R. Heese, S.L. Kramer, T.V. Shaftan, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No.DE-AC02-98CH10886
The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source currently under construction at Brookhaven National Laboratory and starts to commission in 2014. The beam injection works with two septa and four fast kicker magnets in an injection section. To improve the injection stability and reproducibility, we plan to implement a slow local bump on top of the fast bump so that the fast kicker strength is reduced. This bump works as a pseudo movable septum. We can also use this ‘movable’ septum to measure the storage ring beam partial lifetime resulting from the septum edge and possibly increasing the lifetime by moving the stored beam orbit away from the edge. We demonstrate the feasibility of this idea, by implementing DC bump in NSLS X-ray ring. We report the results of beam lifetime measurements as a function of the amplitude of this bumped orbit relative to the septum and the idea of a slow bump that could reduce the fast bump magnet strengths.
 
 
THP135 Implementation of a DC Bump at the Storage Ring Injection Straight Section septum, injection, storage-ring, vacuum 2378
 
  • G.M. Wang, R.P. Fliller, W. Guo, R. Heese, S.L. Kramer, B. Parker, T.V. Shaftan, C.J. Spataro, F.J. Willeke, L.-H. Yu
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE, Contract No.DE-AC02-98CH10886
The NSLS II beam injection works with two septa and four fast kicker magnets. The kicker power supplies each produce a two revolution periods pulsed field, 5.2μs half sine waveform, using ~5kV drive voltage. The corresponding close orbit bump amplitude is ~15mm. It is desired that the bump they produce is transparent to the users for top-off injection. However, high voltage and short pulse power supplies have challenges to maintain pulse-to-pulse stability and magnet-to-magnet reproducibility. To minimize these issues, we propose to implement a DC local bump on top of the fast bump to reduce the fast kicker strength by a factor of 2/3. This bump uses two ring corrector magnets plus one additional magnet at the septum to create a bump. Additionally, these magnets could provide a DC bump, which would simulate the effects of a movable septum on the store beam lifetime. This paper presents the detail design of this DC injection bump and related beam dynamics.
 
 
THP216 Progress with NSLS-II Injection Straight Section Design injection, septum, storage-ring, vacuum 2528
 
  • T.V. Shaftan, A. Blednykh, W.R. Casey, L.R. Dalesio, R. Faussete, M.J. Ferreira, R.P. Fliller, G. Ganetis, R. Heese, H.-C. Hseuh, P.K. Job, E.D. Johnson, B.N. Kosciuk, S. Kowalski, S.L. Kramer, D. Padrazo, B. Parker, I. Pinayev, S.K. Sharma, O. Singh, C.J. Spataro, G.M. Wang, F.J. Willeke
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by U.S. DOE, Contract No.DE-AC02-98CH10886
NSLS-II injection straight section consists of the pulsed and DC/Slow bumps, septa system, beam trajectory correction and diagnostics systems. In this paper we discuss overall injection straight layout, preliminary element designs, specifications for the pulsed and DC magnets and their power supplies, vacuum devices and chambers and diagnostics devices.