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Abstract 
Using the electromagnetic simulation code ECHO, we 

have found [1] a simple phenomenological formula that 
accurately describes the loss factor for short bunches 
traversing an axisymmetric tapered collimator.  In this 
paper, we consider tapered collimators with rectangular 
cross-section and use the GdfidL code to calculate the 
loss factor dependence on the geometric parameters for 
short bunches. The results for both axisymmetric and 
rectangular collimators are discussed. 

INTRODUCTION 
In the design of the vacuum enclosure for particle 

accelerators, there is often the need to incorporate a 
change in cross-sectional geometry.  Examples of 
accelerator components that require changes in cross-
section are RF cavities to accelerate the beam and 
collimators to scrape off the beam halo. When a charged 
particle beam travels through a vacuum chamber with 
changes in the cross-section, electromagnetic fields are 
generated which can act back on the beam causing it to 
lose energy and even become unstable.  To describe this 
process, we must calculate the beam impedance [2-4].  In 
recent years there has been significant progress in both 
the development of numerical [5-7] and analytical [8-11] 
methods to calculate the beam impedance.   

In this paper, we consider structures with axisymmetric 
and rectangular cross-sections. Two programs, the ECHO 
code [5,6] and the GdfidL code [7] are used to calculate 
the loss factor.  We consider a bunch of total charge Q 
having a Gaussian longitudinal profile with rms length 

.  The loss factor  depends on the bunch length  
and is defined to be the energy  lost by the bunch 
when it traverses the structure divided by the total bunch 
charge squared, 

. 
The tapered axially symmetric collimator is illustrated 

in Fig. 1a and the tapered rectangular (flat) collimator in 
Fig. 1b.  We denote the smaller pipe radius in round 
structure and the smaller half-aperture in flat structure by 
b and the larger radius and the larger vertical half-aperture 
by d.  The length of the inner section of the collimator is 
denoted by g.  The length of the tapered section is 
denoted by L.  In all cases that we shall consider, we 
assume the rms bunch length is short compared to the 
smallest radius, i.e. .  

We start our analysis with the known expressions for 
the longitudinal impedance for the round and flat 
collimators with step transitions. Once we know the 

impedance, we can determine the loss factor. 
For the untapered round collimator with  

the impedance is approximately given by  [2,3,9] 

                         (1) 

and the loss factor is  

  .                       (2) 

To convert to mks units, multiply by .  
For the untapered rectangular collimator, the 

longitudinal impedance in the “optical regime” for width 
, has been derived by G. Stupakov, K.L.F. Bane 

and I. Zagorodnov as [10,11] 

 (3) 
where . The loss factor is given by 

 .                       (4) 

 
                     a)                                         b) 

Figure 1: a) Tapered axially symmetric collimator.   
b) Tapered rectangular collimator. 

 
The results of our numerical calculations using ECHO 

and GdfidL, can be approximated by the 
phenomenological formula 

 

                  ,                (5) 

where =0.2 for the round structures [1] and =0.4 for 
the flat structures with . 

AXIALLY SYMMETRIC TAPERED 
COLLIMATOR 

When changes in the vacuum chamber cross-section are 
necessary, it is sometimes possible to reduce the resulting 
impedance by providing a tapered region between the two 
different geometries In the case of axisymmetric 
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collimators with   we have found that the effect 
of tapering on the loss factor is well described by the 
simple formula 

                                     (6) 

The dependence of the loss factor on taper length L is 
illustrated in Fig. 2.  The good agreement with Eq. (6) is 
apparent. As can be seen from Fig. 2, Eq. (6) holds for a 
geometry with zero taper length as well as for large L. For 
L = 0, Eq. (6) becomes equivalent to the well know 
equation Eq. (2). On increasing L, the loss factor changes 
slowly for small L, but it drops dramatically  for 
large L.  This means it is preferable to use long tapers for 
vacuum components in order to reduce the loss factor 
significantly when necessary.  The agreement between the 
numerical results and the formula of Eq. (6) is very good. 

In Figure 2, we plot numerical data for tapered round 
collimators with different parameters , ,  and fixed 

. The vertical axis is the numerically obtained loss 
factor  determined from ECHO, divided by the loss factor 
of Eq. (2). The horizontal axis is the taper length 
multiplied by a scale factor . Analytical data due 
to Eq. (6) are plotted as the ratio of the loss factors for the 
tapered collimator to the step collimator with appropriate 
bunch lengths (green curve). As one can see, all 
numerical data lie close to the analytical curve. The 
agreement is good for all values of L.  
 

 

Figure 2: For a variety of tapered round collimators with 
 = 500mm, we plot the ratio of the simulated loss factor 

(ECHO) to the loss factor due to Eq. (2)  

versus the dimensionless scaled length .  Results 
of ECHO calculations for the loss factor are shown for 
parameters: =0.5mm, d=12.5mm, b=3.125mm (red 
dots); =0.5mm, d=12.5mm, b=6.25mm (cyan dots); 

=0.2mm, d=12.5mm, b=6.25mm (orange dots); and 
=0.5mm, d=50mm, b=6.25mm (blue dots). The green 

curve is given by Eq. (6). 

RECTANGULAR TAPERED 
COLLIMATOR 

Based on the results of GdfidL calculations, we have 
found that for the flat collimators with  and 
width , the effect of tapering on the loss factor is 
well described by  

 

               (7) 

where  is the loss factor of the untapered flat 
collimator given in Eq. (4).  
 

 

Figure 3: For a variety of tapered rectangular collimators 
with  = 48mm, we plot the ratio of the simulated loss 
factor (GdfidL) to the loss factor due to Eq. (4), 

, versus the dimensionless scaled length 

.  Results of GdfidL calculations for the loss 
factor ratios are shown for parameters: d=12mm, b=6mm, 
g=10mm (red dots); d=12mm, b=3mm, g=10mm (blue 
dots); d=6mm, b=3mm, g=10mm (wine dots); d=12mm, 
b=6mm, g=20mm (light green dots); d=6mm, b=3mm, 
g=20mm (black dots). The green curve is given by Eq. 
(7). 

 
For , Eq. (7) becomes equivalent to Eq. (4) for 

the step collimator. For , the behavior of the loss 
factor ratio is similar to that for the round collimator 

except the coefficient in the numerator is a factor 
of four larger. 

In Figure 3, we plot data obtained due to simulations 
using the GdfidL code for different geometric parameters 

, , ,  and  of the rectangular collimator. The 
numerically simulated data agree well with Eq. (7) (green 
curve).  

CONCLUSION 
The behaviour of the impedance of tapered structures 

for very short bunches in the optical regime has been 
determined in refs. [10,11].  Here, for the loss factors for 
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two particular geometries, we have studied the departure 
from the optical regime behaviour as bunch length is 
increased.  In both cases, the ratio of the loss factor for 
the tapered collimator to the loss factor in the optical 
regime is a function only of the scaling parameter 

 .  The fact that the bunch length  and the taper 
length  appear as a product is consistent with the recent 
scaling derived by Stupakov in ref. [12], since there is 
only a weak dependence on g. One noteworthy fact that is 
not a priori expected is that only the larger radius or 
vertical half-aperture  appears.  The reduction factor is 
independent of .  Moreover, it is striking that the 
specific form involving the arctan given in Eq. (5) holds 
for both geometries, with only the coefficient  differing 
by a factor of 2 for flat vs round.  This suggests that 
there may be a useful phenomenological form for more 
general geometries which may follow from natural 
extensions of Eq. (5).  This possibility is presently being 
investigated. 
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