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Abstract 
In addition to previous developments on parallel beam 

dynamics software packages, our efforts have been 
extended to electromagnetic simulations. These efforts 
include developing new software packages solving the 
Maxwell equations in 2D and 3D for time domain and 
eigenvalue simulations. This paper focuses on software 
packages for eigenvalue simulations. These new solvers 
are based on high order numerical methods. Comparative 
studies of different expansion bases, continuous and 
discontinuous GALERKIN methods will be discussed. 
Benchmarks and simulation results will be presented at 
the end.  

INTRODUCTION 
    Most current high energy particle accelerators make 
use of electromagnetic fields to accelerate charged 
particles. Therefore, accurate electromagnetic simulations 
have great importance in the success of accelerator 
modeling. Most accelerating devices have resonating 
Radio Frequency (RF) fields, which needs to solve 
eigenvalues of the Maxwell’s equation. Many different 
numerical methods have been successfully used for 
electromagnetic simulations, such as finite difference 
method (FDM), finite volume method (FVM), finite 
element method (FEM), etc. Due to its flexibility, FEM 
has been broadly applied in EM simulations [4, 7]. 
Standard nodal based FEM produces spurious modes 
which troubled researchers for long time. These problems 
come from the poor representation of the large null space 
of the curl operator. In 1980’s Nédélec proposed 
revolutionary vector bases which overcome this difficulty. 
There are some commercial software packages available 
now, but most of them only run on desktop computer. 
With peta and exa scale supercomputers arrive, efficient 
methods need to be sought for fully making use of them. 
There are also some groups currently making efforts in 
this direction but definitely need more. For better 
understanding the performance of nodal and vector bases, 
we have developed both eigen solvers based on nodal and 
vector bases. Benchmarks and comparisons will be given. 
The eigen solver with the Nédélec vector base has been 
applied in a real resonator simulation.   

MAXWELL’S EQUATION 
Consider the Maxwell’s equations in general three 

dimensional domain Ω , with vacuum we have: 
                                  (1) 

                                          (2) 

 is the charge distribution, and the current  
related to the electric field  through Ohms law, 

, where  is the finite conductivity. The electric 
field  and the electric displacement , the 
magnetic field  and the magnetising field  
have the following constitutive relations: 

                    (3) 
Here  and  are relative permittivity and 

permeability of the material respectively. For our 
simulations of vacuum, they are both equal to one. The 
permittivity  and permeability satisfy . 

Transforming the fields into the Fourier space, 
   (4) 

Then the Maxwell’s equation can be written in curl-curl 
form as: 

       (5) 

     (6) 

For perfect electrically conducting (PEC) wall, the 
boundary conditions for the fields satisfy: 

                                       (7) 

NUMERICAL METHOD 
    We have studied different numerical methods for the 
eigenvalue computation. These include using different 
expansion bases and different numerical methods. These 
methods are explained first in the following, then 
benchmarks and comparisons of them will be present in 
the next section. 
    The first two eigen solvers are based on the nodal 
Finite Element Method (FEM) [2, 3, 5]. Nodal FEM uses 
nodal expansion bases, which is one at particular node 
and zero at all other nodes. Detailed information can be 
found at [3]. The difference of the first two eigen solvers 
is that they adopt different numerical methods. The first 
one uses continuous GALERKIN (CG) method, and the 
second one uses discontinuous GALERKIN (DG) 
method. The third eigen solver is based on the Nédélec 
vector base which shows some advantages over the 
previous two. 

Nodal Bases with CG and DG Methods 
     For CG method, the weak form of the eigenvalue 
problem is as following: ____________________________________________  
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For fixed , find , such that 

 and 
              (8) 

The local stiffness matrix has the following form, 
which are mapped to different locations in the global 
stiffness matrix. 

 
DG method was first proposed in [6], and became 

popular recently. A thorough review of this method can 
be found in [1, 3]. For DG method, first we define the 
jump of function across the boundary surface as: 
                                           (9) 
       , where represents the local field, while 

represents the neighbouring field. Two integration 
operators are needed for DG method, they are: 

          (10) 

         (11) 

       Then the Maxwell’s equation can be written as: 
 
                                                                                 (12) 

                                          (13) 
        This is the weak form of the eigenvalue problem for 
the DG method which is different than for CG. 
 
Nédélec Vector Bases 

During the history of computational electromagnetics, 
people have found that there are many shortcomings 
associated with traditional nodal base and CG method. 
Our investigation with the CG method has verified this, 
while DG method also shows some inefficiency which 
will be shown in the comparisons below. Therefore, we 
tried Nédélec vector base also. There are many different 
types of bases, and we choose the hierarchical Nédélec 
vector base introduced in [8]. 2D bases will be introduced 
first and then 3D bases. 

  The 2D Nédélec vector bases from the space 
can be divided into the following subspaces: 

          
 
It consists of different order edge, face vector bases. 

The edge and face vector bases can also be divided into 
gradient and non-gradient types. In order to make it 
complete in order p for both the vector and curl bases, we 
need the bases complete in order p-1 plus (p+1)-th 
gradient bases and non-gradient bases. The total degree of 
freedom is (P+1)(P+3).  

  The 3D Nédélec vector bases from the space 
can be divided into the following subspaces: 

 
 
 

 

 

It consists of different order edge, face, and volume 
vector bases. The edge, face, and volume vector bases can 
also be divided into gradient and non-gradient types. In 
order to make it complete in order p for both the vector 
and curl bases, it needs bases which are complete in order 
p-1 plus (p+1)-th gradient bases and non-gradient bases. 
The total degrees of freedom is (P+1)(P+3)(P+4)/2. 
Figure 1 shows the 6 edge vector bases on 3D tetrahedron 
element. 

  All three methods will be used to solve the general 
eigenvalue problem . ARPACK software has 
been used as well as new solvers been developed with the 
standard ARNOLDI and LANCZOS algorithms. In order 
to improve the convergence rate, shift-and-invert method 
has been used. 

BENCHMARKS AND SIMULATION 
RESULTS 

Benchmarks 
First we test our first and second eigenvalue solvers 

based on nodal bases and using CG and DG methods. The 
domain is a box . The 
analytical solution is . Table 1 shows the first 
eigenvalue computed with CG and DG methods. 
Although the results are close, there are many spurious 
modes and it is hard to identify the correct one. 

 
Figure 1: 6 Nédélec Edge Vector Bases with P=0 on 3D 
tetrahedron element. 
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Next, we test our third eigen solver using the Nédélec 
vector base. As can be seen in Table 2, with low order P 
(<2), accurate eigenavlues can be obtained, and there is 
no spurious mode. But with P=2, there still exist some 
spurious modes, which need to be investigated more in 
the future. Using 55k tetrahedron elements, very accurate 
results have been obtained. 
Table 1: The First Eigenvalue with CG and DG Methods 

  P=4 CG DG 
 48.4765 48.9599 

 
 
 
 
 
 
 
 

 

Comparisons 
Besides spurious modes free, using the Nédélec vector 

base has other advantages as shown in Table 3. DG solver 
has the largest global degree of freedom, which is about 
6~10 times larger than using the Nédélec vector base. 
This brings many difficulties in the matrix inversion 
which is the most time consuming part. From this study, 
we can see that the DG method has some shortcoming in 
dealing with eigenvalue simulation. 

 
Table 3. Degree of Freedom for Different Methods with 
Different Order P 

P CG DG Vector Base 
3 537 4902 165 
4 2094 10184 1038 
5 6618 18310 3231 

 
Application 
     At last we have applied the third eigen solver for the 
simulations of a Half Wave Resonator (HWR) shown in 
Fig.2. The mesh has been partitioned to 256 processors. 
The result has been compared with CST MWS, and given 
in Table. 4. Close result has been obtained. It is also 
found that high order P brings many challenges on the 
speed and convergence of the simulations which needs to 
also be improved in the future. 
 

Table 4. Comparison of the First Eigenvalues of HWR 
Solver New CST MWS 

Mesh (k) 5.765 500 
P 0 N/A 

CPU 256 1 
Frequency (MHz) 235.7 234.4 

SUMMARY 
     This paper presents our efforts on developing parallel 
eigen solvers with different numerical methods. This 
includes using nodal bases with CG and DG methods, as 

well as using Nédélec vector bases on 3D tetrahedron 
element. ARPARCK software as well as self developed 
solvers has been used to extract eigen values in these 
three different eigen solvers. Similar to previous 
researchers, we found that both CG and DG eigen solvers 
produce spurious modes, and it is hard to separate them 
from the true physical modes. Using the Nédélec vector 
base can overcome this, but there are still spurious modes 
when using high order P.  The new eigen solver using 
Nédélec vector base has been used for a HWR simulation, 
and correct results have been obtained. This work 
provides many future research areas and makes a solid 
ground for future developments and applications of 
electromagnetic modeling for accelerators. 
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Table 2: The first 5 Digenvalues with Nédélec Vector 
Base on box [-1, 1]3. 
Mode Theory P=0, 

E=203 
P=1, 

E=203 
P=2, 

E=203 
P=0, 

E=55k 
1 4.935 4.828 4.856 4.909 4.935 
2 4.935 4.909 4.869 4.929 4.934 
3 4.935 4.945 4.870 4.930 4.934 
4 7.402 7.132 7.140 4.940* 7.395 
5 7.402 7.376 7.183 5.391* 7.396 

Figure 2: Partition mesh (256) for Half Wave 
Resonator (E=120k) 
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