Space-Charge Effects in H⁻ Low-Energy Beam Transport of LANSCE

Yuri Batygin, Chandra Pillai, Larry Rybarcyk

Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA

28 March 2011

The LANSCE accelerator provides unique flexible time-structured beams from 100 to 800 MeV

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Low-Energy Beam Transport

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

-05

Typical parameters for LANSCE linac beams

Area	Rep Rate [Hz]	Pulse Length [µs]	Chopping pattern	Iavg [µA]	Pavg [kw]
pRad	~1	625	60 ns bursts every ~1 μs	< 1	< 1
WNR (Tgt4)	40	625	1 μ–pulse every ~ 1.8 μs	≤2	~ 1.6
Lujan	20	625	290ns/358ns	100- 125	80- 100
UCN	20	625	Lujan-like to none	< 5	< 4
IPF	≤30 in pulsed mode	625	NA	250	25

Note: All beams are 800 MeV, H⁻ except for IPF which is 100 MeV, H⁺.

Beam emittance scan at TBEM1

Particle distribution generated from TBEM1 emittance scan data

Measured beam distribution at TBEM3

Results of PARMILA simulation from TBEM1 to TBEM3 with current of I = 15 mA

Results of PARMILA simulation from TBEM1 to TBEM3 with current of I = 0

Comparison of BEAMPATH simulation with TDEM1 emittance scan

Run:22684 Stn: TDEM01-H
Beam: H- Meas, Norm
E(total) = 4.219, 0.169 pr
E(rms) = 0.505, 0.020 pi
Etot/rms = 18.35
Beta = 0.158
4*Ē(rms)= 2.020 pi
C = 0.062 cm CP = -1.394 mm
$X_Sigma = 0.2824$ cm
XP Sīgma= 3.6365 mr
Maximum Counts = 269
Beam thru thresh= 65369
Cletr Pos = 1327 1853
Jaw Pos = 1341 1930

Mismatch between emittance measurements and simulations

Mismatch factor
$$F = \sqrt{\frac{1}{2}(R + \sqrt{R^2 - 4})} - 1$$

 $R = \beta_{exp}\gamma_s + \beta_s\gamma_{exp} - 2\alpha_{exp}\alpha_s$

Station	I=0	I=15 mA
TBEM2-H	0.3003156	0.2039033
TBEM2-V	0.1455864	0.2105775
TBEM3-H	0.4146634	0.3143147
TBEM3-V	6.7809701E-02	3.7730098E-02
TBEM4-H	0.6731801	0.2845534
TBEM4-V	0.1216830	0.1859181
TDEM1-H	0.7964662	0.1929483
TDEM1-V	4.1545153E-02	0.1046102
		_

F = 0.319

F = 0.191

Effect of input distribution on beam emittance distortion

TBEM3 beam emittance scan

BEAMPATH simulation with measured input distribution

BEAMPATH simulation with elliptical input distributions

Effect of space charge aberration on beam emittance

Space charge density and space charge field of the beam with Gaussian distribution are given by

$$\rho(r_o) = \frac{2I}{\pi R_o^2 \beta c} exp(-2\frac{r_o^2}{R_o^2})$$

$$E_b = \frac{I}{2\pi\varepsilon_o \beta c} \frac{1}{r_o} \left[1 - exp(-2\frac{r_o^2}{R_o^2})\right]$$

Nonlinear function in space charge field is expanded as

$$f(r_o) = 1 - exp(-2\frac{r_o^2}{R_o^2}) \approx 2\frac{r_o^2}{R_o^2} - 2\frac{r_o^4}{R_o^4} + \dots$$

At the initial stage of beam emittance growth we can assume, that particle radius is unchanged, while the slope of the trajectory is changed. It gives us the nonlinear transformation:

 $r = r_{o}$ $r' = r'_{o} + \frac{2 z P^{2}}{R_{o}^{2}} r_{o} - \frac{2 z P^{2}}{R_{o}^{4}} r_{o}^{3}$

where $P^2 = \frac{2I}{I_c \beta^3 \gamma^3}$ is the generalized perveance, $I_c = 4\pi \varepsilon_o mc^3 / q$ is the characteristic beam current.

Initial beam distribution:

$$\frac{x_o^2}{R^2}\varepsilon + \frac{x_o^2}{\varepsilon}R^2 = \varepsilon$$

Change variables (x, x') to action-angle variables (J, ψ)

Beam ellipse distortion:

$$T + T^2 2\upsilon \sin \psi \cos^3 \psi + T^3 \upsilon^2 \cos^6 \psi = 1$$

where

Distortion of beam emittance due to space charge aberration

Comparison with TRACE simulations

Mismatch factor F between emittance measurements and TRACE simulations

	I = 0		I = 15 mA	
Station	$4\epsilon_{rms}$	Total	$4\epsilon_{rms}$	Total
		emittance		emittance
TBEM1	0	0	0	0
TBEM2	0.607	0.626	0.456	0.359
TBEM3	0.627	0.648	0.732	0.513
TBEM4	0.879	0.935	0.922	0.428
TDEM1	1.093	1.161	0.686	0.565
	$\overline{F} = 0.801$	$\overline{F} = 0.843$	$\overline{F} = 0.699$	$\overline{F} = 0.466$

TRACE beam tracking in drift space from TBEM3 to TBEM4

TRACE TRACE 20-JUL-10 16:42:14 TBTD.TRA N1= 85 N2=112 I= 20.00 SC=T W= 0.750 SMAX= 5.

X tektronix(Tek)

TRACE mismatch factor F as a function of beam current in beam drift between TBEM3 and TBEM4.

Results of TRACE beam tracking from TBEM3 to TBEM4 using measured data at TBEM3. Adjustment of beam current was done to get close to measured TBEM4 beam data.

Beam transmission through LEBT as a function of vacuum conditions

Estimation of H⁻ stripping cross section from measurements

 ΔI

Beam losses

$$\frac{1}{I} = n\sigma l$$
$$\sigma = \left(\frac{\Delta I}{I}\right) \frac{1}{nl}$$

_1

Cross section

$$n = \frac{N_A P}{RT}$$

#	Pressure, <u>Torr</u>	Relative beam	Cross section, m ²
		losses	
1	7e-07	0.0387	7.19e-20
2	7e-06	0.0977	1.8e-20
3	1.3e-05	0.175	1.75e-20
4	5e-05	0.528	1.5e-20
5	6e-07	0.0192	4e-20
6	7e-06	0.1049	3.9e-20
7	2.6e-05	0.305	1.52e-20

Average value of stripping cross section $\sigma = 3.08 \cdot 10^{-16} cm^2$

Cross Section for stripping H⁻ in different gases (Atomic Data for Controlled Fusion Research, ORNL-5206)

Single stripping cross-section σ_{-10}

 \underline{of} 750 keV H⁻ in different gases

Gas	Cross section,	
	cm^2	
H_2	$7 \cdot 10^{-17}$	
Не	$5 \cdot 10^{-17}$	
N_2	$3 \cdot 10^{-16}$	
02	$4 \cdot 10^{-16}$	

TDEM1 emittance scans under nominal and poor LEBT vacuum conditions

 $7 \cdot 10^{-7}$ Torr

 $3 \cdot 10^{-5}$ Torr

- 1. LANSCE H⁻ 750 keV beam transport is space charge uncompensated.
- 2. The beam develops S-shaped distortion in phase space typical for nonlinear space charge forces.
- 3. Macroparticle models give the best agreement to experimentally observed

results when the input distribution is taken directly from measurements.

4. Elliptical models are insufficient to reproduce dynamics of H⁻ beam.

